Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS).
View Article and Find Full Text PDFβ-amyloid (Aβ) peptides form self-organizing fibrils in Alzheimer's disease. The biologically active, toxic Aβ25-35 fragment of the full-length Aβ-peptide forms a stable, oriented filament network on the mica surface with an epitaxial mechanism at the timescale of seconds. While many of the structural and dynamic features of the oriented Aβ25-35 fibrils have been investigated before, the β-strand arrangement of the fibrils and their exact orientation with respect to the mica lattice remained unknown.
View Article and Find Full Text PDFVon Willebrand factor (VWF) is a multimer with a variable number of protomers, each of which is a head-to-head dimer of two multi-domain monomers. VWF responds to shear through the unfolding and extension of distinct domains, thereby mediating platelet adhesion and aggregation to the injured blood vessel wall. VWF's C segment uncoils and then the A domain unfolds and extends in a hierarchical and sequential manner.
View Article and Find Full Text PDFTMPyP is a porphyrin capable of DNA binding and used in photodynamic therapy and G-quadruplex stabilization. Despite its broad applications, TMPyP's effect on DNA nanomechanics is unknown. Here we investigated, by manipulating λ-phage DNA with optical tweezers combined with microfluidics in equilibrium and perturbation kinetic experiments, how TMPyP influences DNA nanomechanics across wide ranges of TMPyP concentration (5-5120 nM), mechanical force (0-100 pN), NaCl concentration (0.
View Article and Find Full Text PDFHypercholesterolemia (HC) induces, propagates and exacerbates cardiovascular diseases via various mechanisms that are yet not properly understood. Extracellular vesicles (EVs) are involved in the pathomechanism of these diseases. To understand how circulating or cardiac-derived EVs could affect myocardial functions, we analyzed the metabolomic profile of circulating EVs, and we performed an in-depth analysis of cardiomyocyte (CM)-derived EVs in HC.
View Article and Find Full Text PDFIn contrast to red blood cells, platelets float rather than sediment when a column of blood is placed in the gravitational field. By the analogy of erythrocyte sedimentation (ESR), it can be expressed with the platelet antisedimentation rate (PAR), which quantitates the difference in platelet count between the upper and lower halves of the blood column after 1 h of 1 g sedimentation. Venous blood samples from 21 healthy subjects were analyzed for PAR.
View Article and Find Full Text PDFNucleotide and force-dependent mechanisms control how the viral genome of lambda bacteriophage is inserted into capsids.
View Article and Find Full Text PDFThe Semmelweis Study is a prospective occupational cohort study that seeks to enroll all employees of Semmelweis University (Budapest, Hungary) aged 25 years and older, with a population of 8866 people, 70.5% of whom are women. The study builds on the successful experiences of the Whitehall II study and aims to investigate the complex relationships between lifestyle, environmental, and occupational risk factors, and the development and progression of chronic age-associated diseases.
View Article and Find Full Text PDFHeterozygous (HET) truncating variant mutations in the TTN gene (TTNtvs), encoding the giant titin protein, are the most common genetic cause of dilated cardiomyopathy (DCM). However, the molecular mechanisms by which TTNtv mutations induce DCM are controversial. Here, we studied 127 clinically identified DCM human cardiac samples with next-generation sequencing (NGS), high-resolution gel electrophoresis, Western blot analysis, and super-resolution microscopy in order to dissect the structural and functional consequences of TTNtv mutations.
View Article and Find Full Text PDFThe pandemic caused by the SARS-CoV-2 virus has claimed more than 6.5 million lives worldwide. This global challenge has led to accelerated development of highly effective vaccines tied to their ability to elicit a sustained immune response.
View Article and Find Full Text PDFKnowledge of the physical and chemical properties of phospholipids, such as phase transition temperatures (Tc), is of great importance in order to reveal the functionalities of biological and artificial membranes. Our research group developed an oscillatory rheological method for the simple and rapid determination of phase transition temperatures (Tc). The phospholipids constructing the membranes undergo conformational changes at their Tc, which cause alterations of viscoelastic properties of the molecules.
View Article and Find Full Text PDFDespite the worldwide success of mRNA-LNP Covid-19 vaccines, the nanoscale structures of these formulations are still poorly understood. To fill this gap, we used a combination of atomic force microscopy (AFM), dynamic light scattering (DLS), transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM), and the determination of the intra-LNP pH gradient to analyze the nanoparticles (NPs) in BNT162b2 (Comirnaty), comparing it with the well-characterized PEGylated liposomal doxorubicin (Doxil). Comirnaty NPs had similar size and envelope lipid composition to Doxil; however, unlike Doxil liposomes, wherein the stable ammonium and pH gradient enables accumulation of C-methylamine in the intraliposomal aqueous phase, Comirnaty LNPs lack such pH gradient in spite of the fact that the pH 4, at which LNPs are prepared, is raised to pH 7.
View Article and Find Full Text PDFFibrillin-1 microfibrils are essential elements of the extracellular matrix serving as a scaffold for the deposition of elastin and endowing connective tissues with tensile strength and elasticity. Mutations in the fibrillin-1 gene (FBN1) are linked to Marfan syndrome (MFS), a systemic connective tissue disorder that, besides other heterogeneous symptoms, usually manifests in life-threatening aortic complications. The aortic involvement may be explained by a dysregulation of microfibrillar function and, conceivably, alterations in the microfibrils' supramolecular structure.
View Article and Find Full Text PDFA giant multidomain protein of striated and smooth vertebrate muscles, titin, consists of tandems of immunoglobulin (Ig)- and fibronectin type III (FnIII)-like domains representing β-sandwiches, as well as of disordered segments. Chicken smooth muscles express several titin isoforms of ~500-1500 kDa. Using various structural-analysis methods, we investigated in vitro nonspecific amyloid aggregation of the high-molecular-weight isoform of chicken smooth-muscle titin (SMT, ~1500 kDa).
View Article and Find Full Text PDFT7 phages are -infecting viruses that find and invade their target with high specificity and efficiency. The exact molecular mechanisms of the T7 infection cycle are yet unclear. As the infection involves mechanical events, single-particle methods are to be employed to alleviate the problems of ensemble averaging.
View Article and Find Full Text PDFAlthough malaria has been known for more than 4 thousand years, it still imposes a global burden with approx. 240 million annual cases. Improvement in diagnostic techniques is a prerequisite for its global elimination.
View Article and Find Full Text PDFBackground: Fibrin, the main scaffold of thrombi, is susceptible to citrullination by PAD (peptidyl arginine deiminase) 4, secreted from neutrophils during the formation of neutrophil extracellular traps. Citrullinated fibrinogen (citFg) has been detected in human plasma as well as in murine venous thrombi, and it decreases the lysability and mechanical resistance of fibrin clots.
Objective: To investigate the effect of fibrinogen citrullination on the structure of fibrin clots.
The dynamics of the actin cytoskeleton and its connection to endothelial cell-cell junctions determine the barrier function of endothelial cells. The proper regulation of barrier opening/closing is necessary for the normal function of vessels, and its dysregulation can result in chronic and acute inflammation leading to edema formation. By using atomic force microscopy, we show here that thrombin-induced permeability of human umbilical vein endothelial cells, associated with actin stress fiber formation, stiffens the cell center.
View Article and Find Full Text PDFCystic fibrosis (CF) is a frequent genetic disease in Caucasians that is caused by the deletion of F508 (ΔF508) in the nucleotide binding domain 1 (NBD1) of the CF transmembrane conductance regulator (CFTR). The ΔF508 compromises the folding energetics of the NBD1, as well as the folding of three other CFTR domains. Combination of FDA approved corrector molecules can efficiently but incompletely rescue the ΔF508-CFTR folding and stability defect.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2022
The role of hydrophobic and polar interactions in providing thermodynamic stability to folded proteins has been intensively studied, but the relative contribution of these interactions to the mechanical stability is less explored. We used steered molecular dynamics simulations with constant-velocity pulling to generate force-extension curves of selected protein domains and monitor hydrophobic surface unravelling upon extension. Hydrophobic contribution was found to vary between one fifth and one third of the total force while the rest of the contribution is attributed primarily to hydrogen bonds.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2022
Titin is a multifunctional filamentous protein anchored in the M-band, a hexagonally organized supramolecular lattice in the middle of the muscle sarcomere. Functionally, the M-band is a framework that cross-links myosin thick filaments, organizes associated proteins, and maintains sarcomeric symmetry via its structural and putative mechanical properties. Part of the M-band appears at the C-terminal end of isolated titin molecules in the form of a globular head, named here the "M-complex", which also serves as the point of head-to-head attachment of titin.
View Article and Find Full Text PDFThe leadership of the Semmelweis University as a leading institution of higher education in Hungary and the Central Eastern European region within the area of medicine and health sciences has decided to reflect on the unfavorable public health situation in the country as well as the deteriorating health behavior and health status indicators in the Hungarian population by the development of an occupational setting-based personalized public health model program targeting its about 8500 employees. Based on its infrastructure and human resources the core element of the program is the establishment of the Center of Preventive Services (CPS) with units providing health risk assessment for each employee, and whenever necessary consultation with medical specialist in preventive medicine and public health, as well as counseling with dietician, physiotherapist and/or health psychologist. The service providers are the staff members of the relevant faculties in collaboration with partner primary and occupational care physicians.
View Article and Find Full Text PDF