Publications by authors named "Mikko Nisula"

Controlled surface functionalization with azides to perform on surface "click chemistry" is desired for a large range of fields such as material engineering and biosensors. In this work, the stability of an azido-containing self-assembled monolayer in high vacuum is investigated using in situ Fourier transform infrared spectroscopy. The intensity of the antisymmetric azide stretching vibration is found to decrease over time, suggesting the degradation of the azido-group in high vacuum.

View Article and Find Full Text PDF

The prospect of introducing tunable electric conductivity in metal-organic coordination polymers is of high interest for nanoelectronic applications. As the electronic properties of these materials are strongly dependent on their microstructure, the assembly of coordination polymers into thin films with well-controlled growth direction and thickness is crucial for practical devices. Here, we report the deposition of one-dimensional (1D) coordination polymer thin films of ,'-dimethyl dithiooxamidato-copper by atomic/molecular layer deposition.

View Article and Find Full Text PDF

Alucones are one of the best-known films in the Molecular Layer Deposition (MLD) field. In this work, we prove that alucone/Al2O3 nanolaminate synthesis can be successfully performed by alternating alucone MLD growth with static O2 plasma exposures. Upon plasma treatment, only the top part of the alucone is densified into Al2O3, while the rest of the film remains relatively unaltered.

View Article and Find Full Text PDF

Control of the redox potential of lithium terephthalate LiTP anode material is demonstrated by functionalizing its terephthalate backbone with an electron-donating amino group; this lowers - as intended - the redox potential of LiTP by 0.14 V. The two Li-organic electrode materials, LiTP and LiTP-NH, are fabricated as crystalline thin films from gaseous precursors using the atomic/molecular layer deposition (ALD/MLD) technique.

View Article and Find Full Text PDF

The combined atomic and molecular layer deposition (ALD/MLD) technique offers a unique way to build-both known and previously unknown-crystalline coordination polymer materials directly from gaseous precursors in a high-quality thin-film form. Here, we demonstrate the ALD/MLD of crystalline Li-, Na-, and K-based 3,5-pyridinedicarboxylate (3,5-PDC) thin films; the Li -3,5-PDC films are of the known Li-ULMOF-4 crystal structure whereas the other as-deposited crystalline films possess structures not previously reported. Another exciting possibility offered by ALD/MLD is the deposition of well-defined but amorphous metal-organic thin films, such as our Mg-, Ca-, Sr-, and Ba-based 3,5-PDC films, which can then be crystallized into water-containing structures through a post-deposition humidity treatment.

View Article and Find Full Text PDF

We present novel atomic/molecular layer deposition (ALD/MLD) processes for the fabrication of crystalline inorganic-organic coordination network thin films with different s-block elements. Terephthalic acid is employed as the organic precursor. Such thin films could enable for example, next-generation battery, sensor and gas-storage technologies.

View Article and Find Full Text PDF

Crystalline Li-organic thin films are grown with the atomic/molecular layer deposition (ALD/MLD) technique from lithium hexamethyldisilazide and hydroquinone. The as-deposited films are found to undergo a reversible structural transformation upon exposure to ambient humid air. According to density functional theory calculations, the guest-induced transformation may be related to an unsaturated Li site in the crystal structure.

View Article and Find Full Text PDF

The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere.

View Article and Find Full Text PDF

We demonstrate the fabrication of high-quality electrochemically active organic lithium electrode thin films by the currently strongly emerging combined atomic/molecular layer deposition (ALD/MLD) technique using lithium terephthalate, a recently found anode material for lithium-ion battery (LIB), as a proof-of-the-concept material. Our deposition process for Li-terephthalate is shown to well comply with the basic principles of ALD-type growth including the sequential self-saturated surface reactions, a necessity when aiming at micro-LIB devices with three-dimensional architectures. The as-deposited films are found crystalline across the deposition temperature range of 200-280 °C, which is a trait highly desired for an electrode material but rather unusual for hybrid inorganic-organic thin films.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhg9410so9qka3hq0bgo9th7mceakkggf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once