Publications by authors named "Mikko Kanerva"

This data article provides an extensive dataset obtained from finite element (FE) simulations of microbond (MB) tests. The simulations cover a wide range of structural effects and artifacts that influence the results of the MB tests. A total of 432 simulations were performed,taking into account the various factors such as blade geometry and position, plastic behaviour of thermoset and thermoplastic droplets, material properties of the fibres, residual stresses, fracture modes at interfaces, and FE mesh sensitivity analysis.

View Article and Find Full Text PDF

Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.

View Article and Find Full Text PDF

For many antibacterial polymer fibres, especially for those with natural functional additives, the antibacterial response might not last over time. Moreover, the mechanical performance of polymeric fibres degrades significantly during the intended operation, such as usage in textile and industrial filter applications. The degradation process and overall ageing can lead to emitted volatile organic compounds (VOCs).

View Article and Find Full Text PDF

In this paper, we report on the use of amorphous lignin, a waste by-product of the paper industry, for the production of high performance carbon fibers (CF) as precursor with improved thermal stability and thermo-mechanical properties. The precursor was prepared by blending of lignin with polyacrylonitrile (PAN), which was previously dissolved in an ionic liquid. The fibers thus produced offered very high thermal stability as compared with the fiber consisting of pure PAN.

View Article and Find Full Text PDF

Stretchable electronics promise to extend the application range of conventional electronics by enabling them to keep their electrical functionalities under system deformation. Within this framework, development of printable silver-polymer composite inks is making possible to realize several of the expected applications for stretchable electronics, which range from seamless sensors for human body measurement (e.g.

View Article and Find Full Text PDF

Current designs of leg-lengthening implants have faced serious failures due to inadequacies in the mechanical design. The failure typically is the result of fatigue induced by a combined loading condition with axial and shear components acting in the tubular body of the implant. One of the reasons leading to the failure is improper verification testing for the design of the fatigue limit.

View Article and Find Full Text PDF

In this article, we introduce for the first time, a method to manufacture cellulose based electrically conductive non-woven three-dimensional (3D) structures using the foam forming technology. The manufacturing is carried out using a minimum amount of processing steps, materials, and hazardous chemicals. The optimized solution applies a single surfactant type and a single predefined portion for the two main processing steps: (1) the dispersing of nanocellulose (NC) and carbon nanotubes (CNT) and (2) the foam forming process.

View Article and Find Full Text PDF

The stretchability of electronic devices is typically obtained by tailoring the stretchable interconnects that link the functional units together. The durability of the interconnects against environmental conditions, such as deformation and chemicals, is therefore important to take into account. Different approaches, including encapsulation, are commonly used to improve the endurance of stretchable interconnects.

View Article and Find Full Text PDF

In this paper, we propose and verify a theoretical model of the development of dispersion quality of aqueous carbon nanotube (CNT) colloid as a function of sonochemical yield of the sonication process. Four different surfactants; Triton X-100, Pluronic F-127, CTAB and SDS were studied. From these four SDS had the lowest dispersion performance which was surprising.

View Article and Find Full Text PDF

Titania nanotubes (TNTs) with different morphology and crystal structure are prepared by chemical processing and rapid breakdown anodization (RBA) methods. The nanotubes are studied in terms of thermal conductivity. The TNTs with variable wall thickness below 30 nm have significantly reduced thermal conductivity than bulk titania, due to the phonon confinement, smaller phonon mean free path, and enhanced phonon boundary scattering.

View Article and Find Full Text PDF

We present a detailed study on the influence of sonication energy and surfactant type on the electrical conductivity of nanocellulose-carbon nanotube (NFC-CNT) nanocomposite films. The study was made using a minimum amount of processing steps, chemicals and materials, to optimize the conductivity properties of free-standing flexible nanocomposite films. In general, the NFC-CNT film preparation process is sensitive concerning the dispersing phase of CNTs into a solution with NFC.

View Article and Find Full Text PDF