Significant efforts have been devoted over the last few years to develop efficient molecular electrocatalysts for the electrochemical reduction of carbon dioxide to carbon monoxide, the latter being an industrially important feedstock for the synthesis of bulk and fine chemicals. Whereas these efforts primarily focus on this formal oxygen abstraction step, there are no reports on the exploitation of the chemistry for scalable applications in carbonylation reactions. Here we describe the design and application of an inexpensive and user-friendly electrochemical set-up combined with the two-chamber technology for performing Pd-catalysed carbonylation reactions including amino- and alkoxycarbonylations, as well as carbonylative Sonogashira and Suzuki couplings with near stoichiometric carbon monoxide.
View Article and Find Full Text PDFA three-component coupling protocol has been developed for the generation of 3-oxo-3-(hetero)arylpropanenitriles via a carbonylative palladium-catalyzed α-arylation of tert-butyl 2-cyanoacetates with (hetero)aryl bromides followed by an acid-mediated decarboxylation step. Through the combination of only a stoichiometric loading of carbon monoxide and mild basic reaction conditions such as MgCl2 and dicyclohexylmethylamine for the deprotonation step, an excellent functional group tolerance was ensured for the methodology. Through the use of (13)C-labeled carbon monoxide generated from (13)COgen, the corresponding (13)C-isotopically labeled β-ketonitriles were obtained, and these products could subsequently be converted into cyanoalkynes and 3-cyanobenzofurans with site specific (13)C-isotope labeling.
View Article and Find Full Text PDFTwo novel iminosugars called nojiristegines, being structural hybrids between nor-tropane alkaloid calystegine and nojirimycins, have been synthesised and found to be stable molecules despite the presence of a hemiaminal functionality. The synthesised iminosugars were evaluated against a panel of glycosidases and the best inhibition (IC50), found against α-glucosidases, was in the micromolar region. The compounds were also evaluated as potential antibiotics but no useful level of activity was observed.
View Article and Find Full Text PDFPhotocatalytic hydrogen evolution may provide one of the solutions to the shift to a sustainable energy society, but the quantum efficiency of the process still needs to be improved. Precise control of the composition and structure of the metal nanoparticle cocatalysts is essential, and we show that fine-tuning the Au-Pd nanoparticle structure modifies the electronic properties of the cocatalyst significantly. Specifically, Pd(shell)-Au(core) nanoparticles immobilized on TiO2 exhibit extremely high quantum efficiencies for H2 production using a wide range of alcohols, implying that chemical byproducts from the biorefinery industry can be used as feedstocks.
View Article and Find Full Text PDF