Metastasis remains a leading cause of cancer-related mortality, irrespective of the primary tumour origin. However, the core gene regulatory program governing distinct stages of metastasis across cancers remains poorly understood. We investigate this through single-cell transcriptome analysis encompassing over two hundred patients with metastatic and non-metastatic tumours across six cancer types.
View Article and Find Full Text PDFEffective therapeutics are necessary for managing severe COVID-19 disease despite the availability of vaccines. Small interfering RNA (siRNA) can silence viral genes and restrict SARS-CoV-2 replication. Cell-penetrating peptides is a robust method for siRNA delivery, enhancing siRNA stability and targeting specific receptors.
View Article and Find Full Text PDFMetastasis is the major cause of cancer death, and the development of therapy resistance is common. The tumor microenvironment can confer chemotherapy resistance (chemoresistance), but little is known about how specific host cells influence therapy outcome. We show that chemotherapy induces neutrophil recruitment and neutrophil extracellular trap (NET) formation, which reduces therapy response in mouse models of breast cancer lung metastasis.
View Article and Find Full Text PDFDNA methyltransferase (DNMT) inhibitors are used for treatment of certain hematological malignancies and exert anti-cancer activity through diverse mechanisms, including reexpression of tumor suppressor genes and anti-viral responses triggered by expression of endogenous retroviruses. Despite advances in the pharmacokinetic properties of DNMT inhibitors, the efficacy of these drugs in solid cancers remains low. Here, we show in cell lines and clinical and experimental tumors across multiple cancer types that DNMT inhibition induces the expression of interleukin-1 (IL-1), a cytokine with proinflammatory and protumorigenic properties.
View Article and Find Full Text PDFCancer/testis antigens are receiving attention as targets for cancer therapy due to their germ- and cancer cell-restricted expression. However, many of these antigens are inconsistently expressed among cancer types and individual tumors. Here, we show that members of the SSX cancer/testis antigen family comprise attractive targets in the majority of melanoma patients, as SSX is expressed in more than 90% of primary melanomas and metastases and plays a critical role in metastatic progression.
View Article and Find Full Text PDFThe transcription factor ZBED1 is highly expressed in trophoblast cells, but its functions in the processes of trophoblast and placental biology remain elusive. Here, we characterized the role of ZBED1 in trophoblast cell differentiation using an in vitro BeWo cell model. We demonstrate that is enhanced in its expression early after forskolin-induced differentiation of BeWo cells and regulates many of the genes that are differentially expressed as an effect of forskolin treatment.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that exhibits a high proliferation rate and early metastasis leading to a poor prognosis. HMGA2 is a DNA binding transcriptional regulator implicated in tumorigenesis. Here, we demonstrate that the promoter is demethylated in TNBC tumors, leading to increased expression of HMGA2 at both mRNA and protein levels.
View Article and Find Full Text PDFdeficiency in breast cancer leads to resistance to PI3K-AKT inhibitor treatment despite aberrant activation of this signaling pathway. Here, we report that genetic depletion or small molecule inhibition of KDM4B histone demethylase activates the unfolded protein response (UPR) pathway and results in preferential apoptosis in -deficient triple-negative breast cancers (TNBCs). Intriguingly, this function of KDM4B on UPR requires its demethylase activity but is independent of its canonical role in histone modification, and acts through its cytoplasmic interaction with eIF2α, a crucial component of UPR signaling, resulting in reduced phosphorylation of this component.
View Article and Find Full Text PDFBackground: GAGE cancer/testis antigens are frequently expressed in various types of malignancies and represent attractive targets for immunotherapy, however their role in cancer initiation and progression has remained elusive. GAGE proteins are expressed in normal cells during early development with migratory and invasive properties and were found to be upregulated in cancer cells with metastasizing potential in a gastric cancer model.
Methods: We have addressed the direct role of GAGE proteins in supporting metastasis using an isogenic metastasis model of human cancer, consisting of 4 isogenic cell lines, which are equally tumorigenic in immunodeficient mice, but differ with their ability to generate metastases in the lungs and lymph nodes.
The development of metastasis is a complex, multistep process that remains poorly defined. To identify proteins involved in the colonization phase of the metastatic process, we compared the proteome of tumors derived from inoculation of a panel of isogenic human cancer cell lines with different metastatic capabilities into the mammary fat pad of immunodeficient mice. Using a protein standard generated by SILAC-labeling, a total of 675 proteins were identified and 30 were differentially expressed between at least two of the tumors.
View Article and Find Full Text PDF