Publications by authors named "Mikkel Bentzon-Tilia"

Background: Permafrost microbiomes are of paramount importance for the biogeochemistry of high latitude soils and while endemic biosynthetic domain sequences involved in secondary metabolism have been found in polar surface soils, the biosynthetic potential of permafrost microbiomes remains unexplored. Moreover, the nature of these ecosystems facilitates the unique opportunity to study the distribution and diversity of biosynthetic genes in relic DNA from ancient microbiomes. To explore the biosynthesis potential in permafrost, we used adenylation (AD) domain sequencing to evaluate non-ribosomal peptide (NRP) production in permafrost cores housing microbiomes separated at kilometer and kiloyear scales.

View Article and Find Full Text PDF

Unlabelled: Microalgal microbiomes play vital roles in the growth and health of their host, however, their composition and functions remain only partially characterized, especially across microalgal phyla. In this study, a natural seawater microbiome was introduced to three distinct, axenic species of microalgae, the haptophyte the chlorophyte and the diatom (previously ), and its divergence and assembly under constant illumination was monitored over 49 days using 16S rRNA amplicon and metagenomic analyses. The microbiomes had a high degree of host specificity in terms of taxonomic composition and potential functions, including CAZymes profiles.

View Article and Find Full Text PDF

Our understanding of the role of secondary metabolites in microbial communities is challenged by intrinsic limitations of culturing bacteria under laboratory conditions and hence cultivation independent approaches are needed. Here, we present a protocol termed Secondary Metabolite FISH (SecMet-FISH), combining advantages of gene-targeted fluorescence in situ hybridization (geneFISH) with in-solution methods (in-solution FISH) to detect and quantify cells based on their genetic capacity to produce secondary metabolites. The approach capitalizes on the conserved nature of biosynthetic gene clusters (BGCs) encoding adenylation (AD) and ketosynthase (KS) domains, and thus selectively targets the genetic basis of non-ribosomal peptide and polyketide biosynthesis.

View Article and Find Full Text PDF

Microbial secondary metabolites play important roles in biotic interactions in microbial communities and yet, we do not understand how these compounds impact the assembly and development of microbial communities. To address the implications of microbial secondary metabolite production on biotic interactions in the assembly of natural seawater microbiomes, we constructed a model system where the assembly of a natural seawater biofilm community was influenced by the addition of the marine biofilm forming Phaeobacter inhibens that can produce the antibiotic secondary metabolite tropodithietic acid (TDA), or a mutant incapable of TDA production. Because of the broad antibiotic activity of TDA, we hypothesized that the potential of P.

View Article and Find Full Text PDF

In the search for novel drug candidates, diverse environmental microbiomes have been surveyed for their secondary metabolite biosynthesis potential, yet little is known about the biosynthetic diversity encoded by divergent microbiomes from different ecosystems, and the environmental parameters driving this diversity. Here, we used targeted amplicon sequencing of adenylation (AD) and ketosynthase (KS) domains along with 16S sequencing to delineate the unique biosynthetic potential of microbiomes from three separate habitats (soil, water, and sediments) exhibiting unique small spatial scale physicochemical gradients. The estimated richness of AD domains was highest in marine sediments with 656 ± 58 operational biosynthetic units (OBUs), while the KS domain richness was highest in soil microbiomes with 388 ± 67 OBUs.

View Article and Find Full Text PDF

Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA).

View Article and Find Full Text PDF

Fish-pathogenic bacteria of the genus are a serious emerging concern in modern aquaculture, causing tenacibaculosis in a broad selection of cultured finfish. Data describing their virulence mechanisms are scarce and few means, antibiotic treatment aside, are available to control their proliferation in aquaculture systems. We genome sequenced a collection of 19 putative isolates from outbreaks at two aquaculture facilities and tested their susceptibility to treatment with tropodithietic acid (TDA)-producing group probiotics.

View Article and Find Full Text PDF

As we stand on the brink of the post-antibiotic era, we are in dire need of novel antimicrobial compounds. Microorganisms produce a wealth of so-called secondary metabolites and have been our most prolific source of antibiotics so far. However, rediscovery of known antibiotics from well-studied cultured microorganisms, and the fact that the majority of microorganisms in the environment are out of reach by means of conventional cultivation techniques, have led to the exploration of the biosynthetic potential in natural microbial communities by novel approaches.

View Article and Find Full Text PDF

Novel natural products have traditionally been sourced from culturable soil microorganisms, whereas marine sources have been less explored. The purpose of this study was to profile the microbial biosynthetic potential in coastal surface seawater and sandy sediment samples and to evaluate the feasibility of capturing this potential using traditional culturing methods. Amplicon sequencing of conserved ketosynthase (KS) and adenylation (AD) domains within polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes showed that seawater and, in particular, sandy sediment had a high biosynthetic potential with 6,065 and 11,072 KS operational biosynthetic units (OBUs) and 3,292 and 5,691 AD OBUs, respectively, compared to that of four soil samples collected by Charlop-Powers et al.

View Article and Find Full Text PDF

The genus has been explored as probiotics in mariculture as a sustainable strategy for the prevention of bacterial infections. Its antagonistic effect against common fish pathogens is predominantly due to the production of the antibacterial compound tropodithietic acid (TDA), and TDA-producing strains have repeatedly been isolated from mariculture environments. Despite many trials targeting pathogens, little is known about its impact on host-associated microbiomes in mariculture.

View Article and Find Full Text PDF

Covering: up to 2019Humanity is in dire need for novel medicinal compounds with biological activities ranging from antibiotic to anticancer and anti-dementia effects. Recent developments in genome sequencing and mining have revealed an unappreciated potential for bioactive molecule production in marine Proteobacteria. Also, novel bioactive compounds have been discovered through molecular manipulations of either the original marine host bacteria or in heterologous hosts.

View Article and Find Full Text PDF

The Roseobacter group is a widespread marine bacterial group, of which some species produce the broad-spectrum antibiotic tropodithietic acid (TDA). A mode of action for TDA has previously been proposed in Escherichia coli, but little is known about its effect on non-producing marine bacteria at in situ concentrations. The purpose of this study was to investigate how a sub-lethal level of TDA affects Vibrio vulnificus at different time points (30 and 60 min) using a transcriptomic approach.

View Article and Find Full Text PDF

An S-methylated analogue of tropodithietic acid (TDA, 1), methyl troposulfenin (2), was isolated from the marine alphaproteobacterium Phaeobacter inhibens. The structure was elucidated by NMR and HRMS. Its inhibitory effect against the fish pathogen Vibrio anguillarum was 4-fold to 100-fold lower than that of the known antibacterial compound TDA.

View Article and Find Full Text PDF

Bacteria-host interactions are universal in nature and have significant effects on host functionality. Bacterial secondary metabolites are believed to play key roles in such interactions as well as in interactions within the host-associated microbial community. Hence, prominent secondary metabolite-producing bacteria may be strong drivers of microbial community composition in natural host-associated microbiomes.

View Article and Find Full Text PDF

The expanding aquaculture industry plays an important role in feeding the growing human population and with the expansion, sustainable bacterial disease control, such as probiotics, becomes increasingly important. Tropodithietic acid (TDA)-producing Phaeobacter spp. can protect live feed, for example rotifers and Artemia as well as larvae of turbot and cod against pathogenic vibrios.

View Article and Find Full Text PDF

The Roseobacter-group species Phaeobacter inhibens produces the antibacterial tropodithietic acid (TDA) and the algaecidal roseobacticides with both compound classes sharing part of the same biosynthetic pathway. The purpose of this study was to investigate the production of roseobacticides more broadly in TDA-producing roseobacters and to compare the effect of producers and non-producers on microalgae. Of 33 roseobacters analyzed, roseobacticide production was a unique feature of TDA-producing P.

View Article and Find Full Text PDF

Only 1% of marine bacteria are currently culturable using standard laboratory procedures, and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of this study was to investigate if improved cultivation conditions, including the use of an alternative gelling agent and supplementation with signaling molecules, improve the culturability of bacteria from seawater. Replacing agar with gellan gum improved viable counts 3- to 40-fold, depending on medium composition and incubation conditions, with a maximum of 6.

View Article and Find Full Text PDF

Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems.

View Article and Find Full Text PDF

Microorganisms are of great importance to aquaculture where they occur naturally, and can be added artificially, fulfilling different roles. They recycle nutrients, degrade organic matter and, occasionally, they infect and kill the fish, their larvae or the live feed. Also, some microorganisms may protect fish and larvae against disease.

View Article and Find Full Text PDF

Unlabelled: Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters.

View Article and Find Full Text PDF

Fish-pathogenic Vibrio can cause large-scale crashes in marine larval rearing units and, since the use of antibiotics can result in bacterial antibiotic resistance, new strategies for disease prevention are needed. Roseobacter-clade bacteria from turbot larval rearing facilities can antagonize Vibrio anguillarum and reduce mortality in V. anguillarum-infected cod and turbot larvae.

View Article and Find Full Text PDF

The genetic capacity to fix gaseous nitrogen (N) is distributed among diverse diazotrophs belonging to the Bacteria and Archaea. However, only a subset of the putative diazotrophs present actively fix N at any given time in the environment. We experimentally tested whether the availability of carbon and inhibition by oxygen constrain N fixation by diazotrophs in coastal seawater.

View Article and Find Full Text PDF

Unlabelled: The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas stutzeri strain BAL361 and Raoultella ornithinolytica strain BAL286, which are gammaproteobacteria, and Rhodopseudomonas palustris strain BAL398, an alphaproteobacterium.

View Article and Find Full Text PDF

The community composition of N2 -fixing microorganisms (diazotrophs) was investigated in copepods (primarily Acartia spp.) in parallel to that of seawater in coastal waters off Denmark (Øresund) and New England, USA. The unicellular cyanobacterial diazotroph UCYN-A was detected from seawater and full-gut copepods, suggesting that the new N contributed by UCYN-A is directly transferred to higher trophic levels in these waters.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmlifch8tacq7vbdm978gij6uecjuj831): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once