An efficient strategy to obtain a broad array of chiral and achiral heterotropones and their corresponding [4 + 2] cycloadducts is disclosed. This strategy enables access to unique heterotropones and intricate bicyclic structures in high yields and diastereoselectivities through a simple procedure and from easily accessible starting materials.
View Article and Find Full Text PDFNovel asymmetric aminocatalytic cycloadditions are described between formyl cycloheptatrienes and 6,6-dimethylfulvene that lead to [4 + 2], [6 + 2], and [4 + 6] cycloadducts. The unprecedented reaction course is dependent on the position of the formyl functionality in the cycloheptatriene core, and each formyl cycloheptatriene isomer displays a distinct reactivity pattern. The formyl cycloheptatriene isomers are activated by a chiral primary diamine catalyst, and the activation mode is dependent on the position of the formyl functionality relative to the cycloheptatriene core.
View Article and Find Full Text PDFThis study presents a novel photoredox-enabled enantioconvergent catalytic strategy used to construct chiral 2-1,3-benzoxazines via an unprecedented oxa-6π electrocyclization utilizing racemic α-substituted glycinates as substrates. The approach leverages a cobalt-based chiral Lewis acid catalyst, which promotes the transformation under thermal or photoredox conditions. While the thermal reaction selectively converts only the ()-configured glycinates into enantioenriched 2-1,3-benzoxazines (up to 96:4 e.
View Article and Find Full Text PDFA multifunctional (noncovalent) catalyst containing halogen-bond donor, hydrogen-bond donor, and Lewis basic sites was developed and applied in an enantioselective Mannich reaction between malononitrile and diphenylphosphinoyl-protected aldimine affording products in high yields (up to 98%) and moderate to high enantiomeric purities (ee up to 89%). Typically, noncovalent catalysts rely on several weak interactions to activate the substrate, with one or two of these giving the most notable contribution to activation. In this instance, instead of the initially proposed coactivation by halogen bonding, it was revealed that hydrogen bonding plays a key role in determining the enantioselectivity.
View Article and Find Full Text PDFAn asymmetric Michael addition of malononitrile to vinyl phosphonates was accomplished by hydrogen bond-enhanced bifunctional halogen bond (XB) catalysis. NMR titration experiments were used to demonstrate that halogen bonding, with the support of hydrogen-bonding, played a key role in the activation of the Michael acceptors through the phosphonate group. This is the first example of the use of XBs for the activation of organophosphorus compounds in synthesis.
View Article and Find Full Text PDFHalogen bonding has received a significant increase in attention in the past 20 years. An important part of this interest has centered on catalytic applications of halogen bonding. Halogen bond (XB) catalysis is still a developing field in organocatalysis, although XB catalysis has outgrown its proof of concept phase.
View Article and Find Full Text PDFStrong halogen bond (XB) donors are needed for the activation of neutral substrates. We demonstrate that XB donor properties of iodo-triazoles can be significantly enhanced by quaternization in combination with varying the counterion and aromatic substituent, exemplified by association constants with quinuclidine as high as 1.1 × 10 M.
View Article and Find Full Text PDFIn the past decade halogen bond (XB) catalysis has gained considerable attention. Halo-triazoles are known XB donors, yet few examples detail their use as catalysts. As a continuation of our previous work the catalytic properties of substituted enantiomerically pure halo-triazolium salts were explored in the reaction between an imine and Danishefsky's diene leading to the formation of dihydropyridinone.
View Article and Find Full Text PDFA general platform for the synthesis of various chiral halogen-bond (XB) donors based on the triazole core and the characterisation of factors that influence the strength of the halogen bond in the solid state and in solution are reported. The characterisation of XB donors in the solid state by X-ray crystallography and in solution by H NMR titration can be used to aid the design of new XB donors. We describe the first example of a XB between iodotriazoles and thioureas in solution.
View Article and Find Full Text PDF