Spectroscopic measurements of the magnetic field evolution in a Z-pinch throughout stagnation and with particularly high spatial resolution reveal a sudden current redistribution from the stagnating plasma (SP) to a low-density plasma (LDP) at larger radii, while the SP continues to implode. Based on the plasma parameters it is shown that the current is transferred to an increasing-conductance LDP outside the stagnation, a process likely to be induced by the large impedance of the SP. Since an LDP often exists around imploding plasmas and in various pulsed-power systems, such a fast current redistribution may dramatically affect the behavior and achievable parameters in these systems.
View Article and Find Full Text PDFUsing detailed spectroscopic measurements, highly resolved in both time and space, a self-generated plasma rotation is demonstrated using a cylindrical implosion with a preembedded axial magnetic field (B_{z0}). The rotation direction is found to depend on the direction of B_{z0} and its velocity is found comparable to the peak implosion velocity, considerably affecting the force and energy balance throughout the implosion. Moreover, the evolution of the rotation is consistent with magnetic flux surface isorotation, a novel observation in a Z pinch, which is a prototypical time dependent system.
View Article and Find Full Text PDFAn experimental study of the magnetic field distribution in gas-puff Z pinches with and without a preembedded axial magnetic field (B_{z0}) is presented. Spatially resolved, time-gated spectroscopic measurements were made at the Weizmann Institute of Science on a 300 kA, 1.6 μs rise time pulsed-power driver.
View Article and Find Full Text PDFThe fundamental physics of the magnetic field distribution in a plasma implosion with a preembedded magnetic field is investigated within a gas-puff Z pinch. Time and space resolved spectroscopy of the polarized Zeeman effect, applied for the first time, reveals the impact of a preembedded axial field on the evolution of the current distribution driven by a pulsed-power generator. The measurements show that the azimuthal magnetic field in the imploding plasma, even in the presence of a weak axial magnetic field, is substantially smaller than expected from the ratio of the driving current to the plasma radius.
View Article and Find Full Text PDFIn the self-magnetic-pinch diode, the electron beam, produced through explosive field emission, focuses on the anode surface due to its own magnetic field. This process results in dense plasma formation on the anode surface, consisting primarily of hydrocarbons. Direct measurements of the beam's current profile are necessary in order to understand the pinch dynamics and to determine x-ray source sizes, which should be minimized in radiographic applications.
View Article and Find Full Text PDF