Publications by authors named "Mikiembo Kukwikila"

We present a simple strategy for the synthesis of main chain oligonucleotide rotaxanes with precise control over the position of the macrocycle. The novel DNA-based rotaxanes were analyzed to assess the effect of the mechanical bond on their properties.

View Article and Find Full Text PDF

Controlling the functional dynamics of DNA within living cells is essential in biomedical research. Epigenetic modifications such as DNA methylation play a key role in this endeavour. DNA methylation can be controlled by genetic means.

View Article and Find Full Text PDF

The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation.

View Article and Find Full Text PDF

A generic strategy to expand the analytical scope of electrical nanopore sensing is presented. We specifically and electrically detect the activity of a diagnostically relevant hydrolytic enzyme and remove the analytically harmful interference from the biochemically complex sample matrix of blood serum. Our strategy is demonstrated at the example of the renin protease which is involved in regulation of blood pressure.

View Article and Find Full Text PDF

The enzymatic activity of a protease was electrically detected using nanopore recordings. A peptide substrate was tethered to microscale beads, and cleavage by the enzyme trypsin released a soluble fragment that was electrophoretically driven through the α-hemolysin protein pore, leading to detectable blockades in the ionic current. Owing to its simplicity, this approach to sense enzymatic activity may be applied to other proteases.

View Article and Find Full Text PDF

We describe the synthesis of 2'-deoxyuridine-5'-triphosphate derivatives bearing linkers of varying length, bulk and flexibility, at position 5 of the pyrimidine base. Nucleotide analogues with terminal functional groups are of interest due to their application potential for the functional labelling of DNA strands. In the course of the synthesis of the nucleotide analogues, the methodology for the Yoshikawa phosphorylation procedure was optimised, resulting in an approach which reduces the amount of side-products and is compatible with labile functional groups attached to the base.

View Article and Find Full Text PDF