Background: Posttraumatic headache (PTH) is a common and debilitating symptom following repetitive mild traumatic brain injury (rmTBI), and it mainly resembles a migraine-like phenotype. While modulation of the endocannabinoid system (ECS) is effective in treating TBI and various types of pain including migraine, the role of augmentation of endocannabinoids in treating PTH has not been investigated.
Methods: Repetitive mild TBI was induced in male C57BL/6J mice using the non-invasive close-head impact model of engineered rotational acceleration (CHIMERA).
Chronic neuropathic pain resulting from peripheral nerve damage is a significant clinical problem, which makes it imperative to develop the mechanism-based therapeutic approaches. Enhancement of endogenous cannabinoids by blocking their hydrolysis has been shown to reduce inflammation and neuronal damage in a number of neurological disorders and neurodegenerative diseases. However, recent studies suggest that inhibition of their hydrolysis can shift endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide (AEA) toward the oxygenation pathway mediated by cyclooxygenase-2 (COX-2) to produce proinflammatory prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs).
View Article and Find Full Text PDFPosttraumatic headache (PTH) attributed to traumatic brain injury (TBI) is a secondary headache developed within 7 days after head injury, and in a substantial number of patients PTH becomes chronic and lasts for more than 3 months. Current medications are almost entirely relied on the treatment of primary headache such as migraine, due to its migraine-like phenotype and the limited understanding on the PTH pathogenic mechanisms. To this end, increasing preclinical studies have been conducted in the last decade.
View Article and Find Full Text PDFModulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes.
View Article and Find Full Text PDFElevated level of oxidized RNA was detected in vulnerable neurons in Alzheimer patients. Subsequently, several diseases and pathological conditions were reported to be associated with RNA oxidation. In addition to several oxidized derivatives, cross-linking and unique strand breaks are generated by RNA oxidation.
View Article and Find Full Text PDFMicroglia, the resident immune cells of the central nervous system, mediate brain homeostasis by controlling neuronal proliferation/differentiation and synaptic activity. In response to external signals from neuropathological conditions, homeostatic (M0) microglia can adopt one of two activation states: the classical (M1) activation state, which secretes mediators of the proinflammatory response, and the alternative (M2) activation state, which presumably mediates the resolution of neuroinflammation and tissue repair/remodeling. Since chronic inflammatory activation of microglia is correlated with several neurodegenerative diseases, functional modulation of microglial phenotypes has been considered as a potential therapeutic strategy.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) has been recognized as a therapeutic target for several neurological diseases because its inhibition can exert neuroprotective and anti-inflammatory effects by boosting the endogenous levels of -acylethanolamines. However, previous studies have shown inconsistent results by pharmacological inhibition and genetic deletion of FAAH in response to inflammation. In this study we used two inhibitors, PF3845 and URB597, together with siRNA knockdown to characterize further the effects of FAAH inhibition in BV2 microglial cells.
View Article and Find Full Text PDFFollowing publication of the original article [1], the authors reported that one of the authors' names was spelled incorrectly.
View Article and Find Full Text PDFPosttraumatic stress disorder is developed by exposure to a threatening and/or a horrifying event and characterized by the presence of anxiety, hyperarousal, avoidance, and sleep abnormality for a prolonged period of time. To elucidate the potential molecular mechanisms, we constructed a mouse model by electric foot shock followed by situational reminders and performed transcriptome analysis in brain tissues. The stressed mice acquired anxiety-like behavior after 2 weeks and exaggerated startle response after 4 weeks.
View Article and Find Full Text PDFEnhancement of endocannabinoid signaling has emerged as an attractive strategy for the treatment of pain. In addition to the well-characterized hydrolytic pathways, cyclooxygenase-2 (COX-2) mediated oxygenation is thought to be an alternative route for endocannabinoid metabolism and therefore provides a new avenue for drug intervention. In this study, we examined the therapeutic effect of indomethacin morpholinamide (IMMA), a novel substrate-selective COX-2 inhibitor, in the chronic constriction injury (CCI) mouse model.
View Article and Find Full Text PDFConcussive traumatic brain injury (TBI) is the predominant type of brain injury in young adults and is a risk factor for the development of chronic traumatic encephalopathy and other neurodegenerative diseases late in life. Using a repetitive closed head injury mouse model, we found that treatment with PF04457845, a novel fatty acid amide hydrolase (FAAH) inhibitor that selectively elevated the brain levels of anandamide, improved locomotor function, learning, and memory in TBI mice examined by beam walk, Y-maze, and Morris water maze tests. The accumulation of microglia and astrocytes and the expression of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), in the ipsilateral TBI mouse cortex and hippocampus were significantly reduced by drug treatment.
View Article and Find Full Text PDFBackground: Targeting the endocannabinoid system has emerged as an effective strategy for the treatment of inflammatory and neurological diseases. Unlike the inhibition of the principal 2-arachidonyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase (MAGL), which leads to 2-AG overload and cannabinoid receptor desensitization, selective inhibition of the minor 2-AG hydrolytic enzyme alpha, beta-hydrolase domain 6 (ABHD6) can provide therapeutic benefits without producing cannabimimetic side effects. We have shown that inhibition of ABHD6 significantly reduces neuroinflammation and exerts neuroprotection in animal models of traumatic brain injury and multiple sclerosis.
View Article and Find Full Text PDFMammalian apurinic/apyrimidinic endonuclease 1 is a DNA repair enzyme involved in genome stability and expression of genes involved in oxidative stress responses, tumor progression and chemoresistance. However, the molecular mechanisms underlying the role of apurinic/apyrimidinic endonuclease 1 in these processes are still unclear. Recent findings point to a novel role of apurinic/apyrimidinic endonuclease 1 in RNA metabolism.
View Article and Find Full Text PDFBackground: α/β-Hydrolase domain 6 (ABHD6) is one of the major enzymes for endocannabinoid 2-arachidonoylglycerol (2-AG) hydrolysis in microglia cells. Our recent studies have shown that a selective ABHD6 inhibitor WWL70 has anti-inflammatory and neuroprotective effects in animal models of traumatic brain injury and multiple sclerosis. However, the role of ABHD6 in the neuroinflammatory response and the mechanisms by which WWL70 suppresses inflammation has not yet been elucidated in reactive microglia.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
December 2016
Melatonin and N-acetylserotonin (NAS) are tryptophan metabolites that have potent anti-oxidant, anti-inflammatory and neuroprotective properties in several animal models of neurological injury and disease including multiple sclerosis (MS). The therapeutic effect of NAS has not been reported previously in experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of MS. Using a MOG-peptide induced EAE mouse model we examined the effects of melatonin and NAS on clinical score, inflammatory markers, free radical generation, and sparing of axons, oligodendrocytes and myelin.
View Article and Find Full Text PDFAlpha/beta-hydrolase domain 6 (ABHD6) is a novel 2-arachidonoylglycerol (2-AG) hydrolytic enzyme, that can fine-tune the endocannabinoid signaling in the central nervous system. Recently we and others have demonstrated the protective effect of ABHD6 inhibition in the animal models of traumatic brain injury and epileptic seizures. In this study, we investigated the role of targeting ABHD6 in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).
View Article and Find Full Text PDFGlial fibrillary acidic protein (GFAP), a protein enriched in astrocytes, and Tau, a protein abundant in neuronal microtubules, are being widely studied as biomarkers of brain injury, and persistent severity-dependent increases in brain and blood have been reported. Studies on the acute changes of these proteins after blast exposure are limited. Using a mouse model of closely-coupled repeated blast exposures, we have evaluated acute changes in the levels of GFAP and total Tau by Western blotting.
View Article and Find Full Text PDFObject: Although traumatic brain injury (TBI) is the leading cause of death and morbidity in young adults, no effective pharmaceutical treatment is available. By inhibiting glycogen synthase kinase-3 (GSK-3) and histone deacetylases (HDACs), respectively, lithium and valproate (VPA) have beneficial effects in diverse neurodegenerative diseases. Furthermore, in an excitotoxic neuronal model and in animal models of amyotrophic lateral sclerosis, Huntington disease, and stroke, combined treatment with lithium and VPA produces more robust neuroprotective effects than treatment with either agent alone.
View Article and Find Full Text PDFGrowing evidence indicates that RNA oxidation is correlated with a number of age-related neurodegenerative diseases, and RNA oxidation has also been shown to induce dysfunction in protein synthesis. Here we study in vitro RNA oxidation catalyzed by cytochrome c (cyt c)/H(2)O(2) or by the Fe(II)/ascorbate/H(2)O(2) system. Our results reveal that the products of RNA oxidation vary with the oxidant used.
View Article and Find Full Text PDFEmerging evidence has shown that oxidation of RNA, including messenger RNA (mRNA), is elevated in several age-related diseases, although investigation of oxidized levels of individual RNA species has been limited. Recently we reported that an aldehyde reactive probe (ARP) quantitatively reacts with oxidatively modified depurinated/depyrimidinated (abasic) RNA. Here we report a novel method to isolate oxidized RNA using ARP and streptavidin beads.
View Article and Find Full Text PDFThere have been several reports describing elevation of oxidized RNA in ageing or age-related diseases, however RNA oxidation has been assessed solely based on 8-hydroxy-guanosine levels. In this study, Aldehyde Reactive Probe (ARP), which was originally developed to detect DNA abasic sites, was used to assess RNA oxidation. It was found that ARP reacted with depurinated tRNA(Phe) or chemically synthesized RNA containing abasic sites quantitatively to as little as 10 fmoles, indicating that abasic RNA is recognized by ARP.
View Article and Find Full Text PDFTo investigate the effect of RNA oxidation on normal cellular functions, we studied the translation of nonoxidized and oxidized luciferase mRNA in both rabbit reticulocyte lysate and human HEK293 cells. When HEK293 cells transfected with nonoxidized mRNA encoding the firefly luciferase protein were cultured in the presence of paraquat, there was a paraquat concentration-dependent increase in the formation of luciferase short polypeptides (SPs) concomitant with an increase in 8-oxoguanosine. Short polypeptides were also formed when the mRNA was oxidized in vitro by the Fe-ascorbate-H(2)O(2) metal-catalyzed oxidation system before its transfection into cells.
View Article and Find Full Text PDFAlpha-synuclein is a phosphoprotein that accumulates as a major component of Lewy bodies in the brains of patients with Parkinson disease. Synphilin-1, which is also present in Lewy bodies, binds with alpha-synuclein and forms cytoplasmic inclusions in transfected cells. Yet the molecular determinants of this protein-protein interaction are unknown.
View Article and Find Full Text PDFLewy bodies (LBs), which are the hallmark pathologic features of Parkinson's disease and of dementia with LBs, have several morphologic and molecular similarities to aggresomes. Whether such cytoplasmic inclusions contribute to neuronal death or protect cells from the toxic effects of misfolded proteins remains controversial. In this report, the role of aggresomes in cell viability was addressed in the context of over-expressing alpha-synuclein and its interacting partner synphilin-1 using engineered 293T cells.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF), a potent survival and trophic factor for various neuronal cells, has been measured by assaying its bioactivity based on neurite outgrowth or cell proliferation. We describe herein a sensitive and simple non-radioactive quantitative bioassay for GDNF family proteins based on their ability to induce tyrosine hydroxylase (TH) gene expression. Human neuroblastoma SK-N-MC cells were stably transfected with expression constructs of c-ret and with a luciferase reporter gene driven by 2 kb of the rat TH gene promoter region.
View Article and Find Full Text PDF