Ribonucleotide reductase (RNR) is composed of two non-identical subunits, R1 and R2, and plays a crucial role in balancing the cellular dNTP pool, establishing it as an attractive cancer target. Herein, we report the discovery of a highly potent and selective small-molecule inhibitor, TAS1553, targeting protein-protein interaction between R1 and R2. TAS1553 is also expected to demonstrate superior selectivity because it does not directly target free radical or a substrate binding site.
View Article and Find Full Text PDFDespite the worldwide approval of three generations of EGFR tyrosine kinase inhibitors (TKI) for advanced non-small cell lung cancers with mutations, no TKI with a broad spectrum of activity against all clinically relevant mutations is currently available. In this study, we sought to evaluate a covalent mutation-specific EGFR TKI, TAS6417 (also named CLN-081), with the broadest level of activity against mutations with a prevalence of ≥1%. Lung cancer and genetically engineered cell lines, as well as murine xenograft models were used to evaluate the efficacy of TAS6417 and other approved/in-development EGFR TKIs (erlotinib, afatinib, osimertinib, and poziotinib).
View Article and Find Full Text PDFActivating mutations in the gene are important targets in cancer therapy because they are key drivers of non-small cell lung cancer (NSCLC). Although almost all common EGFR mutations, such as exon 19 deletions and the L858R point mutation in exon 21, are sensitive to EGFR-tyrosine kinase inhibitor (TKI) therapies, NSCLC driven by EGFR exon 20 insertion mutations is associated with poor clinical outcomes due to dose-limiting toxicity, demonstrating the need for a novel therapy. TAS6417 is a novel EGFR inhibitor that targets EGFR exon 20 insertion mutations while sparing wild-type (WT) EGFR.
View Article and Find Full Text PDF