Besides the fission-fusion dynamics, the cellular distribution of mitochondria has recently emerged as a critical biological parameter in regulating mitochondrial function and cell survival. We previously found that mitochondrial clustering on the nuclear periphery, or monopolar perinuclear mitochondrial clustering (MPMC), accompanies the anticancer activity of air plasma-activated medium (APAM) against glioblastoma and human squamous cell carcinoma, which is closely associated with oxidant-dependent tubulin remodeling and mitochondrial fragmentation. Accordingly, this study investigated the regulatory roles of nitric oxide (NO) in the anticancer activity of APAM.
View Article and Find Full Text PDFCold atmospheric plasmas and plasma-treated solutions (PTSs) have emerged as promising approaches in cancer treatment because of their tumor-selective actions. While oxidative stress is critical for their effects, the precise mechanisms, including chemical mediators, remain obscure. Previously, we reported that air plasma-activated medium (APAM) exhibited tumor-selective anticancer activity.
View Article and Find Full Text PDFIntractable cancers such as osteosarcoma (OS) and oral cancer (OC) are highly refractory, recurrent, and metastatic once developed, and their prognosis is still disappointing. Tumor-targeted therapy, which eliminates cancers effectively and safely, is the current clinical choice. Since aggressive tumors are substantially resistant to multidisciplinary therapies that target apoptosis, tumor-specific activation of another cell death modality is a promising avenue for meeting this goal.
View Article and Find Full Text PDFNon-thermal atmospheric pressure plasma (NTAPP)-activated liquids have emerged as new promising anticancer agents because they preferentially injure malignant cells. Here, we report plasma-activated infusion (PAI) as a novel NTAPP-based anti-neoplastic agent. PAI was prepared by irradiating helium NTAP to form a clinically approved infusion fluid.
View Article and Find Full Text PDFAspirin (acetylsalicylic acid) and its metabolite salicylate, have an anti-melanoma effect by evoking mitochondrial dysfunction through poorly understood mechanisms. Depolarization of the plasma membrane potential leads to voltage-gated Ca entry (VGCE) and caspase-3 activation. In the present study, we investigated the role of depolarization and VGCE in aspirin's anti-melanoma effect.
View Article and Find Full Text PDFvegetables such as garlic ( L.) are rich in organosulfur compounds that prevent human chronic diseases, including cancer. Of these, diallyl trisulfide (DATS) exhibits anticancer effects against a variety of tumors, including malignant melanoma.
View Article and Find Full Text PDFIn a variety of cancer cell types, the pharmacological and genetic blockade of autophagy increases apoptosis induced by various anticancer drugs. These observations suggest that autophagy counteracts drug‑induced apoptosis. We previously reported that in human melanoma and osteosarcoma cells, autophagy inhibitors, such as 3‑methyladenine and chloroquine increased the sensitivity to apoptosis induced by tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL).
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cold plasma-stimulated medium (PSM) are promising novel anticancer tools due to their strong anticancer activities and high tumor-selectivity. The present study demonstrated that PSM and TRAIL may trigger autophagy in human malignant melanoma and osteosarcoma cells. Live-cell imaging revealed that even under nutritional and stress-free conditions, these cells possessed a substantial level of autophagosomes, which were localized in the cytoplasm separately from tubular mitochondria.
View Article and Find Full Text PDFInt J Oncol
March 2018
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cold plasma-stimulated medium (PSM) have been shown to exhibit tumor-selective cytotoxicity and have emerged as promising new tools for cancer treatment. However, to date, at least to the best of our knowledge, no data are available as to which substance is more potent in killing cancer cells. Thus, in this study, we systematically compared their abilities to kill human malignant cells from different origins.
View Article and Find Full Text PDFThe tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising anticancer agent with high tumor-selective cytotoxicity. The congenital and acquired resistance of some cancer types including malignant melanoma and osteosarcoma impede the current TRAIL therapy of these cancers. Since fine tuning of the intracellular Ca2+ level is essential for cell function and survival, Ca2+ dynamics could be a promising target for cancer treatment.
View Article and Find Full Text PDFCa2+ has emerged as a new target for cancer treatment since tumor-specific traits in Ca2+ dynamics contributes to tumorigenesis, malignant phenotypes, drug resistance, and survival in different tumor types. However, Ca2+ has a dual (pro-death and pro-survival) function in tumor cells depending on the experimental conditions. Therefore, it is necessary to minimize the onset of the pro-survival Ca2+ signals caused by the therapy.
View Article and Find Full Text PDFNon-thermal atmospheric gas plasma (AGP) exhibits cytotoxicity against malignant cells with minimal cytotoxicity toward normal cells. However, the mechanisms of its tumor-selective cytotoxicity remain unclear. Here we report that AGP-activated medium increases caspase-independent cell death and mitochondrial network collapse in a panel of human cancer cells, but not in non-transformed cells.
View Article and Find Full Text PDFApo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a promising anticancer drug due to its tumor-selective cytotoxicity. Here we report that TRAIL exhibits distinct effects on the mitochondrial networks in malignant cells and normal cells. Live-cell imaging revealed that multiple human cancer cell lines and normal cells exhibited two different modes of mitochondrial responses in response to TRAIL and death receptor agonists.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer treatment, but some cancer cell types are resistant to TRAIL cytotoxicity. Therefore, overcoming this resistance is necessary for effective TRAIL therapy. Mitochondrial morphology is important for the maintenance of cell function and survival, and is regulated by the delicate balance between fission and fusion.
View Article and Find Full Text PDFConventional genotoxic anti-cancer drugs target the proliferative advantage of tumor cells over normal cells. This kind of approach lacks the selectivity of treatment to cancer cells, because most of the targeted pathways are essential for the survival of normal cells. As a result, traditional cancer treatments are often limited by undesirable damage to normal cells (side-effects).
View Article and Find Full Text PDFWe previously showed that membrane-depolarizing agents such as K+ and ATP-sensitive potassium (KATP) channel inhibitors potentiate tumor necrosis factor-related apoptosis‑inducing ligand (TRAIL)-induced apoptosis in human melanoma cells, but not in normal melanocytes. In this study, we investigated whether the tumor-selective effect of depolarization was observed among different tumor cell types and the mechanisms by which depolarization potentiates death pathways. We found that K+ and KATP channel inhibitors elicited similar apoptosis-potentiating effects in human tumor cells with different origins, including leukemia, melanoma and lung cancer cells.
View Article and Find Full Text PDFIntracellular reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O2()) are thought to mediate apoptosis induced by death receptor ligands, including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). However, the role of H(2)O(2) is controversial, since some evidence suggests that H(2)O(2) acts as an anti-apoptotic factor. Here, we show that exogenously applied H(2)O(2) (30-100 µM) induces cell death in TRAIL-resistant human melanoma cells via intracellular superoxide (O(2)-) generation.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is promising for cancer treatment because of its selective cytotoxicity toward tumor cells. However, some cancer cell types including malignant melanoma cells are resistant to TRAIL cytotoxicity. Here, we show that diallyl trisulfide (DATS), a garlic organosulfur compound, sensitizes melanoma cells to TRAIL-induced apoptosis while sparing normal cells.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is promising for cancer treatment owing to its selective cytotoxicity against malignant cells. However, some cancer cell types, including malignant melanoma cells, are resistant to TRAIL-induced apoptosis. Therefore, drugs that can amplify TRAIL cytotoxicity are urgently required.
View Article and Find Full Text PDFNihon Rinsho Meneki Gakkai Kaishi
December 2005
Indoleamine 2,3-dioxygenase (IDO), one of the enzymes of tryptophan catabolism, has been shown to play an essential role for successful pregnancy through the inhibition of allogenic fetus-induced T-cell proliferation, and interferon-gamma (IFN-gamma) induces the expression of IDO in CD14-positive (CD14(+)) cells. On the other hand, prolactin (PRL) is the hormone whose serum levels drastically elevate during pregnant period and is shown to play an important role in the early stages of pregnancy including implantation. However little is known about the physiological significance of the elevation of PRL from second trimester except for its fundamental role in lactation.
View Article and Find Full Text PDF