Publications by authors named "Miki Sode"

Background: Knee osteoarthritis (OA) is largely attributable to chronic excessive and aberrant joint loading. The purpose of this pilot study was to quantify radiographic changes in subchondral bone after treatment with a minimally invasive joint unloading implant (KineSpring(®) Knee Implant System).

Methods: Nine patients with unilateral medial knee OA resistant to nonsurgical therapy were treated with the KineSpring System and followed for 2 years.

View Article and Find Full Text PDF

Objective: While the importance of cortical structure quantification is increasingly underscored by recent literature, conventional analysis techniques obscure potentially important regional variations in cortical structure. The objective of this study was to characterize the spatial variability in cortical geometry and microstructure at the distal radius and tibia using high resolution peripheral quantitative computed tomography (HR-pQCT). We show that spatially-resolved analysis is able to identify cortical sub-regions with increased sensitivity to the effects of gender and aging.

View Article and Find Full Text PDF

Image quality degradation due to subject motion is a common artifact affecting in vivo high-resolution peripheral quantitative computed tomography (HR-pQCT) of bones. These artifacts confound the accuracy and reproducibility of bone density, geometry, and cortical and trabecular structure measurements. Observer-based systems for grading image quality and criteria for deciding when to repeat an acquisition and post hoc data quality control remain highly subjective and non-standardized.

View Article and Find Full Text PDF

The goal of this study was to characterize longitudinal changes in bone microarchitecture and function in women treated with an established antifracture therapeutic. In this double-blind, placebo-controlled pilot study, 53 early postmenopausal women with low bone density (age = 56 ± 4 years; femoral neck T-score = -1.5 ± 0.

View Article and Find Full Text PDF

Regional variation in trabecular structure across axial sections is often obscured by the conventional global analysis, which takes an average value for the entire trabecular compartment. The objective of this study is to characterize spatial variability in trabecular structure within a cross-section at the distal radius and tibia, and gender and age effects using in vivo high-resolution peripheral quantitative computed tomography (HR-pQCT). HR-pQCT images of the distal radius and tibia were acquired from 146 healthy individuals aged 20-78 years.

View Article and Find Full Text PDF

Non-metric indices of topological features of trabecular bone structure, such as structure model index (SMI), connectivity density (Conn.D), and degree of anisotropy (DA), provide unique information relevant to bone quality. With recent technological advancement, in vivo assessment of these indices may be possible from images acquired using high-resolution imaging techniques such as high-resolution peripheral quantitative computed tomography (HR-pQCT).

View Article and Find Full Text PDF

To eliminate user interaction in longitudinal quantitative computed tomography (QCT) measurements of bone mineral density (BMD) and geometry, we have developed and optimized an automated registration algorithm for QCT images of the hip and spine and integrated it with a previously developed 3D densitometric and structural analysis program. With registration, the follow-up images are automatically aligned with respect to the baseline scans, and the bone quantification of the aligned follow-up scan is initiated based on the bone morphometric features defined on the baseline scan. To validate the algorithm, we analyzed 20 pairs of repeat QCT images (10 hip pairs and 10 spine pairs) acquired on a modern multi-slice CT scanner, with repositioning between each scan pair to simulate repeat visits.

View Article and Find Full Text PDF