DNA double-strand breaks (DSBs) must be repaired to ensure cell survival and genomic integrity. In yeast, the Mre11-Rad50-Xrs2 complex (MRX) collaborates with Sae2 to initiate DSB repair. Sae2 stimulates two MRX nuclease activities, endonuclease and 3'-5' exonuclease.
View Article and Find Full Text PDFRAD51 filament is crucial for the homology-dependent repair of DNA double-strand breaks and stalled DNA replication fork protection. Positive and negative regulators control RAD51 filament assembly and disassembly. RAD51 is vital for genome integrity but excessive accumulation of RAD51 on chromatin causes genome instability and growth defects.
View Article and Find Full Text PDFAim: In Japan, Niraparib maintenance therapy for primary and recurrent ovarian cancer was approved in September 2020 and is expected to improve the prognosis of ovarian cancer. However, the safety of niraparib maintenance therapy in Japanese patients has not been fully evaluated.
Methods: Patients with ovarian cancer (including fallopian tube and peritoneal cancer) treated with niraparib at Jichi Medical University Hospital from September 2020 to August 2022 were enrolled in this study.
Meiotic crossing over is essential for the segregation of homologous chromosomes. The formation and distribution of meiotic crossovers (COs), which are initiated by the formation of double-strand break (DSB), are tightly regulated to ensure at least one CO per bivalent. One type of CO control, CO homeostasis, maintains a consistent level of COs despite fluctuations in DSB numbers.
View Article and Find Full Text PDFDynamic changes in chromosomal structure that occur during meiotic prophase play an important role in the progression of meiosis. Among them, meiosis-specific chromosomal axis-loop structures are important as a scaffold for integrated control between the meiotic recombination reaction and the associated checkpoint system to ensure accurate chromosome segregation. However, the molecular mechanism of the initial step of chromosome axis-loop construction is not well understood.
View Article and Find Full Text PDFAcetaldehyde, a metabolic product of ethanol, induces DNA damage and genome instability. Accumulation of acetaldehyde due to alcohol consumption or aldehyde dehydrogenase (ALDH2) deficiency increases the risks of various types of cancers, including esophageal cancer. Although acetaldehyde chemically induces DNA adducts, the repair process of the lesions remains unclear.
View Article and Find Full Text PDFIn the baker's yeast Saccharomyces cerevisiae, most of the meiotic crossovers are generated through a pathway involving the highly conserved mismatch repair related Msh4-Msh5 complex. To understand the role of Msh4-Msh5 in meiotic crossing over, we determined its genome wide in vivo binding sites in meiotic cells. We show that Msh5 specifically associates with DSB hotspots, chromosome axes, and centromeres on chromosomes.
View Article and Find Full Text PDFDuring meiosis, protein ensembles in the nuclear envelope (NE) containing SUN- and KASH-domain proteins, called linker nucleocytoskeleton and cytoskeleton (LINC) complex, promote the chromosome motion. Yeast SUN-domain protein, Mps3, forms multiple meiosis-specific ensembles on NE, which show dynamic localisation for chromosome motion; however, the mechanism by which these Mps3 ensembles are formed during meiosis remains largely unknown. Here, we showed that the cyclin-dependent protein kinase (CDK) and Dbf4-dependent Cdc7 protein kinase (DDK) regulate meiosis-specific dynamics of Mps3 on NE, particularly by mediating the resolution of Mps3 clusters and telomere clustering.
View Article and Find Full Text PDFThe synaptonemal complex (SC) is a proteinaceous structure that mediates homolog engagement and genetic recombination during meiosis. In budding yeast, Zip-Mer-Msh (ZMM) proteins promote crossover (CO) formation and initiate SC formation. During SC elongation, the SUMOylated SC component Ecm11 and the Ecm11-interacting protein Gmc2 facilitate the polymerization of Zip1, an SC central region component.
View Article and Find Full Text PDFEndocrinol Diabetes Metab Case Rep
April 2021
Summary: The underlying genetic drivers of Kallmann syndrome, a rare genetic disorder characterized by anosmia and hypogonadotropic hypogonadism due to impairment in the development of olfactory axons and in the migration of gonadotropin-releasing hormone (GNRH)-producing neurons during embryonic development, remain largely unknown. SOX10, a key transcription factor involved in the development of neural crest cells and established as one of the causative genes of Waardenburg syndrome, has been shown to be a causative gene of Kallmann syndrome. A 17-year-old male patient, who was diagnosed with Waardenburg syndrome on the basis of a hearing impairment and hypopigmented iris at childhood, was referred to our department because of anosmia and delayed puberty.
View Article and Find Full Text PDFLife Sci Alliance
February 2021
Homologous chromosomes pair with each other during meiosis, culminating in the formation of the synaptonemal complex (SC), which is coupled with meiotic recombination. In this study, we showed that a meiosis-specific depletion mutant of a cullin (Cdc53) in the SCF (Skp-Cullin-F-box) ubiquitin ligase, which plays a critical role in cell cycle regulation during mitosis, is deficient in SC formation. However, the mutant is proficient in forming crossovers, indicating the uncoupling of meiotic recombination with SC formation in the mutant.
View Article and Find Full Text PDFHomologous recombination is essential for chromosome segregation during meiosis I. Meiotic recombination is initiated by the introduction of double-strand breaks (DSBs) at specific genomic locations called hotspots, which are catalyzed by Spo11 and its partners. DSB hotspots during meiosis are marked with Set1-mediated histone H3K4 methylation.
View Article and Find Full Text PDFThe field of genome editing was founded on the establishment of methods, such as the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR/Cas) system, used to target DNA double-strand breaks (DSBs). However, the efficiency of genome editing also largely depends on the endogenous cellular repair machinery. Here, we report that the specific modulation of targeting vectors to provide 3' overhangs at both ends increased the efficiency of homology-directed repair (HDR) in embryonic stem cells.
View Article and Find Full Text PDFThe number and distribution of meiotic crossovers (COs) are highly regulated, reflecting the requirement for COs during the first round of meiotic chromosome segregation. CO control includes CO assurance and CO interference, which promote at least one CO per chromosome bivalent and evenly-spaced COs, respectively. Previous studies revealed a role for the DNA damage response (DDR) clamp and the clamp loader in CO formation by promoting interfering COs and interhomolog recombination, and also by suppressing ectopic recombination.
View Article and Find Full Text PDFProper repair of double-strand breaks (DSBs) is key to ensure proper chromosome segregation. In this study, we found that the deletion of the SRS2 gene, which encodes a DNA helicase necessary for the control of homologous recombination, induces aberrant chromosome segregation during budding yeast meiosis. This abnormal chromosome segregation in srs2 cells accompanies the formation of a novel DNA damage induced during late meiotic prophase I.
View Article and Find Full Text PDFSister chromatid cohesion is essential for chromosome segregation both in mitosis and meiosis. Cohesion between two chromatids is mediated by a protein complex called cohesin. The loading and unloading of the cohesin are tightly regulated during the cell cycle.
View Article and Find Full Text PDFSister chromatid cohesion on chromosome arms is essential for the segregation of homologous chromosomes during meiosis I while it is dispensable for sister chromatid separation during mitosis. It was assumed that, unlike the situation in mitosis, chromosome arms retain cohesion prior to onset of anaphase-I. Paradoxically, reduced immunostaining signals of meiosis-specific cohesin, including the kleisin Rec8, were observed on chromosomes during late prophase-I of budding yeast.
View Article and Find Full Text PDFProteins in the nuclear envelope (NE) play a role in the dynamics and functions of the nucleus and of chromosomes during mitosis and meiosis. Mps3, a yeast NE protein with a conserved SUN domain, predominantly localizes on a yeast centrosome equivalent, spindle pole body (SPB), in mitotic cells. During meiosis, Mps3, together with SPB, forms a distinct multiple ensemble on NE.
View Article and Find Full Text PDFA DNA double strand break (DSB) is one of the most cytotoxic DNA lesions, but it can be repaired by non-homologous end joining (NHEJ) or by homologous recombination. The choice between these two repair pathways depends on the cell cycle stage. Although NHEJ constitutes a simple re-ligation reaction, the regulatory mechanism(s) controlling its activity has not been fully characterized.
View Article and Find Full Text PDFThe malaria parasite Plasmodium falciparum proliferates in the blood stream where the host immune system is most active. To escape from host immunity, P. falciparum has developed a number of evasion mechanisms.
View Article and Find Full Text PDFThe Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks (DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, abrogates MRX recruitment to both types of DNA damage.
View Article and Find Full Text PDFThe number and distribution of meiosis crossover (CO) events on each bivalent are strictly controlled by multiple mechanisms to assure proper chromosome segregation during the first meiotic division. In Saccharomyces cerevisiae, Slx4 is a multi-functional scaffold protein for structure-selective endonucleases, such as Slx1 and Rad1 (which are involved in DNA damage repair), and is also a negative regulator of the Rad9-dependent signaling pathway with Rtt107 Slx4 has been believed to play only a minor role in meiotic recombination. Here, we report that Slx4 is involved in proper intrachromosomal distribution of meiotic CO formation, especially in regions near centromeres.
View Article and Find Full Text PDFBecause DNA double-strand breaks (DSBs) are one of the most cytotoxic DNA lesions and often cause genomic instability, precise repair of DSBs is vital for the maintenance of genomic stability. Xrs2/Nbs1 is a multi-functional regulatory subunit of the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex, and its function is critical for the primary step of DSB repair, whether by homologous recombination (HR) or non-homologous end joining. In human NBS1, mutations result truncation of the N-terminus region, which contains a forkhead-associated (FHA) domain, cause Nijmegen breakage syndrome.
View Article and Find Full Text PDFFaithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template.
View Article and Find Full Text PDFMeiosis-specific cohesin, required for the linking of the sister chromatids, plays a critical role in various chromosomal events during meiotic prophase I, such as chromosome morphogenesis and dynamics, as well as recombination. Rad61/Wpl1 (Wapl in other organisms) negatively regulates cohesin functions. In this study, we show that meiotic chromosome axes are shortened in the budding yeast rad61/wpl1 mutant, suggesting that Rad61/Wpl1 negatively regulates chromosome axis compaction.
View Article and Find Full Text PDF