Publications by authors named "Miki Harigai"

We have investigated the uptake mechanism of palladium (Pd: one of the most important elements in industry used as a catalyst) ions into Prussian-blue nanoparticles (PBNPs) in a nitric acid solution high-resolution electron transmission microscopy, inductively coupled plasma atomic emission spectroscopy, powder X-ray diffraction, and ultraviolet-visible-near infrared spectroscopy in combination with first principles calculations. Comparison of the structural and electronic properties of PBNPs between before and after a 24 h sorption test reveals that the Pd ions incorporated into PBNPs by the substitution of Fe ions of the PB framework while maintaining the crystal structure, and the substitution efficiency is estimated to be 87% per PB unit cell. This implies that 0.

View Article and Find Full Text PDF

We have examined the uptake mechanisms of platinum-group-metals (PGMs) and molybdenum (Mo) ions into Prussian blue nanoparticles (PBNPs) in a nitric acid solution for 24-h sorption test, using inductively coupled plasma atomic emission spectroscopy, powder XRD, and UV-Vis-NIR spectroscopy in combination with first-principles calculations, and revealed that the Ru and Pd ions are incorporated into PBNPs by substitution with Fe and Fe ions of the PB framework, respectively, whereas the Rh ion is incorporated into PBNPs by substitution mainly with Fe and minorly with Fe ion, and Mo ion is incorporated into PBNPs by substitution with both Fe and Fe ions, with maintaining the crystal structure before and after the sorption test. Assuming that the amount of Fe elusion is equal to that of PGMs/Mo substitution, the substitution efficiency is estimated to be 39.0% for Ru, 47.

View Article and Find Full Text PDF

The adsorption and desorption of cesium (Cs) on clays of contaminated soil in a rhizosphere zone can be greatly affected by various biogeochemical processes, the timespans of which are usually months to years. Herein, we present several representative scenarios of the binding of Cs on diverse sites of vermiculitized biotite by controlled Cs adsorption to particles of different sizes. We investigated whether and how the fixed Cs in the different scenarios is desorbed by ambient and hydrothermal treatments with several low-molecular-weight organic acids (LMWOAs).

View Article and Find Full Text PDF

The role of the significant flexibility of the β-turn in photoactive yellow protein (PYP) due to Gly115 was studied. G115A and G115P mutations were observed to accelerate the photocycle and shift the equilibrium between the late photocycle intermediate (pB) and its precursor (pR) toward pR. Thermodynamic analysis of dark-state recovery from pB demonstrated that the transition state (pB) has a negative change in transition heat capacity, suggesting that an exposed hydrophobic surface of pB is buried in pB.

View Article and Find Full Text PDF

A novel hydrophobic ionic liquid including an N,N,N',N'-tetrakis(2-methylpyridyl)-1,2-phenylenediamine-4-amido structure ((IL-1,2-tpbd)+NTf2-) was successfully synthesized. (IL-1,2-tpbd)+NTf2- combined one amido (O-hard donor) and four pyridine (N-soft donor) groups. Its Cd2+ and Zn2+ separation behavior in nitric acid solution was investigated as a function of the extraction time, effect of pH etc.

View Article and Find Full Text PDF

During the photoreaction cycle of photoactive yellow protein (PYP), a physiologically active intermediate (PYP(M)) is formed as a consequence of global protein conformational change. Previous studies have demonstrated that the photocycle of PYP is regulated by the N-terminal loop region, which is located across the central beta-sheet from the p-coumaric acid chromophore. In this paper, the hydrophobic interaction between N-terminal loop and beta-sheet was studied by characterizing PYP mutants of the hydrophobic residues.

View Article and Find Full Text PDF

The trans-to-cis photoisomerization of the p-coumaroyl chromophore of photoactive yellow protein (PYP) triggers the photocycle. Met100, which is located in the vicinity of the chromophore, is a key residue for the cis-to-trans back-isomerization of the chromophore, which is a rate-determining reaction of the PYP photocycle. Here we characterized the photocycle of the Met100Ala mutant of PYP (M100A) by low temperature UV-visible spectroscopy.

View Article and Find Full Text PDF

The role of glycine residues was studied by alanine-scanning mutagenesis using photoactive yellow protein, a structural prototype of PER ARNT SIM domain proteins, as a template. Mutation of glycine located close to the end of beta-strands with dihedral angles disallowed for alanine (Gly-37, Gly-59, Gly-86, and Gly-115) induces destabilization of the protein structure. On the other hand, substitution for Gly-77 and Gly-82, incorporated into the fifth alpha-helix, slows the photocycle by 15-20 times, suggesting that these residues regulate the light-induced structural switch between dark-state structure and signaling-state structure.

View Article and Find Full Text PDF

It is widely accepted that PYP undergoes global structural changes during the formation of the biologically active intermediate PYP(M). High-angle solution x-ray scattering experiments were performed using PYP variants that lacked the N-terminal 6-, 15-, or 23-amino-acid residues (T6, T15, and T23, respectively) to clarify these structural changes. The scattering profile of the dark state of intact PYP exhibited two broad peaks in the high-angle region (0.

View Article and Find Full Text PDF

Photoisomerization of several cis- or Z-stilbene analogs and two E-analogs in low temperature organic glasses was examined. From a mechanistic view-point, the compounds can be divided into three types: (i) those giving identical Hula-twist (HT) and one-bond-flip (OBF) products, (ii) those giving a single HT product that is different (hence distinguishable) from the OBF product and (iii) those showing two distinct HT processes but only one OBF process. Examples for all three types of analogs are provided emphasizing the most informative Type-II (stilbene analogs with identical but unsymmetrically substituted phenyl rings), including linear as well as conformationally constrained compounds.

View Article and Find Full Text PDF

Importance of the CH/pi interaction on the structure and function of the photoactive yellow protein (PYP) was substantiated. Focusing on the phenyl ring of Phe6 adjacent to the alkyl chain of Lys123, the mutants for these amino acid residues were characterized. The results demonstrated that the mutants lacking the pi-electron at position 6 or the alkyl chain at position 123 show substantial malfunction.

View Article and Find Full Text PDF

The role of the array of aromatic amino acid side chains located close to the chromophore binding loop of photoactive yellow protein (PYP) was studied using the alanine-substitution mutagenesis. Phe92, Tyr94, Phe96 and Tyr98 were replaced with alanine (F92A, Y94A, F96A and Y98A, respectively), then these mutants were characterized by UV-visible absorption spectra, circular dichroism (CD) spectra, thermal stability and photocycle kinetics. Absorption maxima of F92A, Y94A, F96A and Y98A were 444, 442, 439 and 447 nm, respectively, different to wild type (WT) at 446 nm.

View Article and Find Full Text PDF

Conformational changes in the light illuminated intermediate (pB) of photoactive yellow protein (PYP) were studied from a viewpoint of the diffusion coefficient (D) change of several N-truncated PYPs, which lacked the N-terminal 6, 15, or 23 amino acid residues (T6, T15, and T23, respectively). For intact PYP (i-PYP), D of pB (D(pB)) was approximately 11% lower than that (D(pG)) of the ground state (pG) species. The difference in D (D(pG) - D(pB)) decreased upon cleavage of the N-terminal region in the order of i-PYP>T6>T15>T23.

View Article and Find Full Text PDF

The long lived intermediate (signaling state) of photoactive yellow protein (PYP(M)), which is formed in the photocycle, was characterized at various pHs. PYP(M) at neutral pH was in equilibrium between two spectroscopically distinct states. Absorption maxima of the acidic form (PYP(M)(acid)) and alkaline form (PYP(M)(alkali)) were located at 367 and 356 nm, respectively.

View Article and Find Full Text PDF

Equilibrium between the photoproducts of photoactive yellow protein (PYP), present in a millisecond time scale, was studied. The near-UV intermediate of PYP (PYPM) was red-shifted by alkalization due to the deprotonation of the chromophore (pKa=10.2).

View Article and Find Full Text PDF

Photoactive yellow protein (PYP) is photoconverted to its putative active form (PYP(M)) with global conformational change(s). The changes in the secondary structure were studied by far-UV circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy using PYP, which lacks N-terminal 6, 15, or 23 amino acid residues (T6, T15, and T23, respectively). Irradiation of truncated PYPs induced the loss of the CD signal, where the maximal difference was located at 222 nm.

View Article and Find Full Text PDF

The light-induced global conformational change of photoactive yellow protein was directly observed by small-angle X-ray scattering (SAXS). The N-terminal 6, 15, or 23 amino acid residues were enzymatically truncated (T6, T15, or T23, respectively), and their near-UV intermediates were accumulated under continuous illumination for SAXS measurements. The Kratky plot demonstrated that illumination induced partial loss of globularity.

View Article and Find Full Text PDF