Publications by authors named "Miki Fujioka"

Two different models have been proposed to explain how the endpoints of chromatin looped domains ('TADs') in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop. In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries.

View Article and Find Full Text PDF

The chromosomes in multicellular eukaryotes are organized into a series of topologically independent loops called TADs. In flies, TADs are formed by physical interactions between neighboring boundaries. Fly boundaries exhibit distinct partner preferences, and pairing interactions between boundaries are typically orientation-dependent.

View Article and Find Full Text PDF

Several distinct activities and functions have been described for chromatin insulators, which separate genes along chromosomes into functional units. Here, we describe a novel mechanism of functional separation whereby an insulator prevents gene repression. When the homie insulator is deleted from the end of a Drosophila even skipped (eve) locus, a flanking P-element promoter is activated in a partial eve pattern, causing expression driven by enhancers in the 3' region to be repressed.

View Article and Find Full Text PDF

Polycomb group (PcG) proteins are an important group of transcriptional repressors that act by modifying chromatin. PcG target genes are covered by the repressive chromatin mark H3K27me3. Polycomb repressive complex 2 (PRC2) is a multiprotein complex that is responsible for generating H3K27me3.

View Article and Find Full Text PDF

A long-standing question in gene regulation is how remote enhancers communicate with their target promoters, and specifically how chromatin topology dynamically relates to gene activation. Here, we combine genome editing and multi-color live imaging to simultaneously visualize physical enhancer-promoter interaction and transcription at the single-cell level in Drosophila embryos. By examining transcriptional activation of a reporter by the endogenous even-skipped enhancers, which are located 150 kb away, we identify three distinct topological conformation states and measure their transition kinetics.

View Article and Find Full Text PDF

Chromosomes in multicellular animals are subdivided into a series of looped domains. In addition to being the underlying principle for organizing the chromatin fiber, looping is critical for processes ranging from gene regulation to recombination and repair. The subdivision of chromosomes into looped domains depends upon a special class of architectural elements called boundaries or insulators.

View Article and Find Full Text PDF

The chromosomes of multicellular animals are organized into a series of topologically independent looped domains. This domain organization is critical for the proper utilization and propagation of the genetic information encoded by the chromosome. A special set of architectural elements, called boundaries or insulators, are responsible both for subdividing the chromatin into discrete domains and for determining the topological organization of these domains.

View Article and Find Full Text PDF

Hb9 is a homeodomain-containing transcription factor that acts in combination with Nkx6, Lim3, and Tail-up (Islet) to guide the stereotyped differentiation, connectivity, and function of a subset of neurons in Drosophila. The role of Hb9 in directing neuronal differentiation is well documented, but the lineage of Hb9(+) neurons is only partly characterized, its regulation is poorly understood, and most of the downstream genes through which it acts remain at large. Here, we complete the lineage tracing of all embryonic Hb9(+) neurons (to eight neuronal lineages) and provide evidence that hb9, lim3, and tail-up are coordinately regulated by a common set of upstream factors.

View Article and Find Full Text PDF

Insulators can block the action of enhancers on promoters and the spreading of repressive chromatin, as well as facilitating specific enhancer-promoter interactions. However, recent studies have called into question whether the activities ascribed to insulators in model transgene assays actually reflect their functions in the genome. The Drosophila even skipped (eve) gene is a Polycomb (Pc) domain with a Pc-group response element (PRE) at one end, flanked by an insulator, an arrangement also seen in other genes.

View Article and Find Full Text PDF

Even skipped (Eve) and Engrailed (En) are homeodomain-containing transcriptional repressors with similar DNA binding specificities that are sequentially expressed in Drosophila embryos. The sloppy-paired (slp) locus is a target of repression by both Eve and En. At blastoderm, Eve is expressed in 7 stripes that restrict the posterior border of slp stripes, allowing engrailed (en) gene expression to be initiated in odd-numbered parasegments.

View Article and Find Full Text PDF

In order to investigate regulation and redundancy within the sloppy paired (slp) locus, we analyzed 30 kilobases of DNA encompassing the tandem, coordinately regulated slp1 and slp2 transcription units. We found a remarkable array of stripe enhancers with overlapping activities surrounding the slp1 transcription unit, and, unexpectedly, glial cell enhancers surrounding slp2. The slp stripe regulatory region generates 7 stripes at blastoderm, and later 14 stripes that persist throughout embryogenesis.

View Article and Find Full Text PDF

The Drosophila ecdysone receptor (EcR/Usp) is thought to activate or repress gene transcription depending on the presence or absence, respectively, of the hormone ecdysone. Unexpectedly, we found an alternative mechanism at work in salivary glands during the ecdysone-dependent transition from larvae to pupae. In the absense of ecdysone, both ecdysone receptor subunits localize to the cytoplasm, and the heme-binding nuclear receptor E75A replaces EcR/Usp at common target sequences in several genes.

View Article and Find Full Text PDF

The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair-rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from -3.1kb to -2.

View Article and Find Full Text PDF

Insulator sequences help to organize the genome into discrete functional regions by preventing inappropriate cross-regulation. This is thought to be mediated in part through associations with other insulators located elsewhere in the genome. Enhancers that normally drive Drosophila even skipped (eve) expression are located closer to the TER94 transcription start site than to that of eve.

View Article and Find Full Text PDF

Although epigenetic maintenance of either the active or repressed transcriptional state often involves overlapping regulatory elements, the underlying basis of this is not known. Epigenetic and pairing-sensitive silencing are related properties of Polycomb-group proteins, whereas their activities are generally opposed by the trithorax group. Both groups modify chromatin structure, but how their opposing activities are targeted to allow differential maintenance remains a mystery.

View Article and Find Full Text PDF

7S globulin (vicilin), the major seed storage protein in adzuki bean [Vigna angularis], was purified by ammonium sulfate fractionation, gel filtration column chromatography, and anion-exchange column chromatography that resulted in two fractions. On SDS-PAGE, both fractions gave two major and some minor bands, but there was a difference in the minor band compositions between the two fractions. Thermal stability, solubility, surface hydrophobicity, and emulsifying ability of these three samples were analyzed.

View Article and Find Full Text PDF

The Drosophila pair-rule gene even skipped (eve) is required for embryonic segmentation and later in specific cell lineages in both the nervous system and the mesoderm. We previously generated eve mesoderm-specific mutants by combining an eve null mutant with a rescuing transgene that includes the entire locus, but with the mesodermal enhancer removed. This allowed us to analyze in detail the defects that result from a precisely targeted elimination of mesodermal eve expression in the context of an otherwise normal embryo.

View Article and Find Full Text PDF

The pair-rule segmentation gene even skipped (eve) is required to activate engrailed stripes and to organize odd-numbered parasegments (PSs). The protein product Eve has been shown to be an active repressor of transcription, and recent models for Eve function suggest that activation of engrailed is indirect, but these models have not been fully tested. Here we identify the forkhead domain transcription factor Sloppy-paired as the key intermediate in the initial activation of engrailed by Eve in odd-numbered parasegments.

View Article and Find Full Text PDF

The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally.

View Article and Find Full Text PDF

We are interested in the mechanisms that generate neuronal diversity within the Drosophila central nervous system (CNS), and in particular in the development of a single identified motoneuron called RP2. Expression of the homeodomain transcription factor Even-skipped (Eve) is required for RP2 to establish proper connectivity with its muscle target. Here we investigate the mechanisms by which eve is specifically expressed within the RP2 motoneuron lineage.

View Article and Find Full Text PDF

Nervous system-specific eve mutants were created by removing regulatory elements from a 16 kb transgene capable of complete rescue of normal eve function. When transgenes lacking the regulatory element for either RP2+a/pCC, EL or U/CQ neurons were placed in an eve-null background, eve expression was completely eliminated in the corresponding neurons, without affecting other aspects of eve expression. Many of these transgenic flies were able to survive to fertile adulthood.

View Article and Find Full Text PDF

Engrailed is a key transcriptional regulator in the nervous system and in the maintenance of developmental boundaries in Drosophila, and its vertebrate homologs regulate brain and limb development. Here, we show that the functions of both of the Hox cofactors Extradenticle and Homothorax play essential roles in repression by Engrailed. Mutations that remove either of them abrogate the ability of Engrailed to repress its target genes in embryos, both cofactors interact directly with Engrailed, and both stimulate repression by Engrailed in cultured cells.

View Article and Find Full Text PDF

The way in which spatially patterned cellular identities are generated is a central question of organogenesis. In the case of Drosophila heart formation, the cardiac progenitors are specified in precise mesodermal positions, giving rise to multiple cell types in a highly ordered arrangement. Here, we study the mechanisms by which positional information conveyed by signaling pathways and a combinatorial code of activating and repressing transcription factors work together to confine the expression of the homeobox gene even-skipped (eve) to a small region of the dorsal mesoderm.

View Article and Find Full Text PDF

During segmentation of the Drosophila embryo, even skipped is required to activate engrailed stripes and to organize odd-numbered parasegments. A 16 kb transgene containing the even skipped coding region can rescue normal engrailed expression, as well as all other aspects of segmentation, in even skipped null mutants. To better understand its mechanism of action, we functionally dissected the Even-skipped protein in the context of this transgene.

View Article and Find Full Text PDF

Regulatory DNA from the Drosophila gene engrailed causes silencing of a linked reporter gene (mini-white) in transgenic Drosophila. This silencing is strengthened in flies homozygous for the transgene and has been called "pairing-sensitive silencing." The pairing-sensitive silencing activities of a large fragment (2.

View Article and Find Full Text PDF