Publications by authors named "Miki Ebisuya"

A classical question in biology is how different processes are controlled in space and time, with research pointing to different mechanisms as timers. In this collection of Voices, we asked researchers to define their scientific questions related to time-keeping and the approaches they use to answer them.

View Article and Find Full Text PDF

Cultured beef holds promising potential as an alternative to traditional meat options. While adult stem cells are commonly used as the cell source for cultured beef, their proliferation and differentiation capacities are limited. To produce cultured beef steaks, current manufacturing plans often require the separate preparation of multiple cell types and intricate engineering for assembling them into structured tissues.

View Article and Find Full Text PDF

The rate of development is highly variable across animal species. However, the mechanisms regulating developmental tempo have remained elusive due to difficulties in performing direct interspecies comparisons. Here, we discuss how pluripotent stem cell-based models of development can be used to investigate cell- and tissue-autonomous temporal processes.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how different biochemical reaction speeds influence developmental differences between species, specifically focusing on mice and humans.
  • Researchers used pluripotent stem cells from various mammals (like marmosets, rabbits, cattle, and rhinos) to analyze their segmentation clocks, finding that the clock periods correlated with the length of embryonic development rather than body weight.
  • The findings highlight that core clock gene HES7's kinetics align with species-specific segmentation times, while metabolic rates do not, revealing overarching biological principles that govern developmental timing across different mammals.
View Article and Find Full Text PDF

The application of synthetic biology approaches to study development opens the possibility to build and manipulate developmental processes to understand them better. Researchers have reconstituted fundamental developmental processes, such as cell patterning and sorting, by engineering gene circuits in vitro. Moreover, new tools have been created that allow for the control of developmental processes in more complex organoids and embryos.

View Article and Find Full Text PDF

The emerging field of synthetic developmental biology proposes bottom-up approaches to examine the contribution of each cellular process to complex morphogenesis. However, the shortage of tools to manipulate three-dimensional (3D) shapes of mammalian tissues hinders the progress of the field. Here we report the development of OptoShroom3, an optogenetic tool that achieves fast spatiotemporal control of apical constriction in mammalian epithelia.

View Article and Find Full Text PDF

Multicellular aggregates are known to exhibit liquid-like properties. The fusion process of two cell aggregates is commonly studied as the coalescence of two viscous drops. However, tissues are complex materials and can exhibit viscoelastic behaviour.

View Article and Find Full Text PDF

During embryonic development, epithelial cell blocks called somites are periodically formed according to the segmentation clock, becoming the foundation for the segmental pattern of the vertebral column. The process of somitogenesis has recently been recapitulated with murine and human pluripotent stem cells. However, an in vitro model for human somitogenesis coupled with the segmentation clock and epithelialization is still missing.

View Article and Find Full Text PDF

In our 20th anniversary year, we reflect on how fields have changed since our first issue and here look to the future. In this collection of Voices, our writers speculate on the future: in terms of philosophy, cell states, cell processes, and then how to model cell systems.

View Article and Find Full Text PDF

Although mechanisms of embryonic development are similar between mice and humans, the time scale is generally slower in humans. To investigate these interspecies differences in development, we recapitulate murine and human segmentation clocks that display 2- to 3-hour and 5- to 6-hour oscillation periods, respectively. Our interspecies genome-swapping analyses indicate that the period difference is not due to sequence differences in the locus, the core gene of the segmentation clock.

View Article and Find Full Text PDF

This study demonstrates the rapid fabrication and utility of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer film for cell patterning. The film was obtained on a cell culture surface by microcasting MPC polymer ethanol solution into a degassed polydimethylsiloxane mold with a desired pattern. After removal of the mold, 293AD cells were cultured on the surface of the polymer film with the patterned microstructures.

View Article and Find Full Text PDF

Pluripotent stem cells are increasingly used to model different aspects of embryogenesis and organ formation. Despite recent advances in in vitro induction of major mesodermal lineages and cell types, experimental model systems that can recapitulate more complex features of human mesoderm development and patterning are largely missing. Here we used induced pluripotent stem cells for the stepwise in vitro induction of presomitic mesoderm and its derivatives to model distinct aspects of human somitogenesis.

View Article and Find Full Text PDF

Synthetic biology offers a bottom-up engineering approach that intends to understand complex systems via design-build-test cycles. Embryonic development comprises complex processes that originate at the level of gene regulatory networks in a cell and emerge into collective cellular behaviors with multicellular forms and functions. Here, we review synthetic biology approaches to development that involve building de novo developmental trajectories or engineering control in stem cell-derived multicellular systems.

View Article and Find Full Text PDF

A synthetic mammalian reaction-diffusion pattern has yet to be created, and Nodal-Lefty signaling has been proposed to meet conditions for pattern formation: Nodal is a short-range activator whereas Lefty is a long-range inhibitor. However, this pattern forming possibility has never been directly tested, and the underlying mechanisms of differential diffusivity of Nodal and Lefty remain unclear. Here, through a combination of synthetic and theoretical approaches, we show that a reconstituted Nodal-Lefty network in mammalian cells spontaneously gives rise to a pattern.

View Article and Find Full Text PDF

Biology is dynamic. Timescales range from frenetic sub-second ion fluxes and enzymatic reactions to the glacial millions of years of evolutionary change. Falling somewhere in the middle of this range are the processes we usually study in development: cell division and differentiation, gene expression, cell-cell signalling, and morphogenesis.

View Article and Find Full Text PDF

The role of secreted molecules in cellular reprogramming has been poorly understood. Here we identify a truncated form of ephrin receptor A7 (EPHA7) as a key regulator of reprogramming. Truncated EPHA7 is prominently upregulated and secreted during reprogramming.

View Article and Find Full Text PDF

Cell-type diversity in multicellular organisms is created through a series of binary cell fate decisions. Lateral inhibition controlled by Delta-Notch signalling is the core mechanism for the choice of alternative cell types by homogeneous neighbouring cells. Here, we show that cells engineered with a Delta-Notch-dependent lateral inhibition circuit spontaneously bifurcate into Delta-positive and Notch-active cell populations.

View Article and Find Full Text PDF

The rapidly self-renewing intestinal epithelium represents an exquisite model for stem cell biology. So far, genetic studies in mice have uncovered crucial roles for several signalling pathways in the tissue. Here we show, by using intestine-specific gene transfer (iGT), that Hippo signalling effectors, YAP and TAZ, promote both the proliferation of intestinal stem/progenitor cells and their differentiation into goblet cells.

View Article and Find Full Text PDF

It remains unclear how changes in gene expression profiles that establish a pluripotent state are induced during cell reprogramming. Here we identify two forkhead box transcription factors, Foxd1 and Foxo1, as mediators of gene expression programme changes during reprogramming. Knockdown of Foxd1 or Foxo1 reduces the number of iPSCs, and the double knockdown further reduces it.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) present the potential to acquire pluripotency under specific culture conditions. However, the frequency of pluripotent cell derivation is low, and the mechanism of SSC reprogramming remains unknown. In this study, we report that induction of global DNA hypomethylation in germline stem (GS) cells (cultured SSCs) induces pluripotent cell derivation.

View Article and Find Full Text PDF

Intermittent fasting is one of the most effective dietary restriction regimens that extend life span in C. elegans and mammals. Fasting-stimulus responses are key to the longevity response; however, the mechanisms that sense and transduce the fasting stimulus remain largely unknown.

View Article and Find Full Text PDF

A small number of transcription factors, including Oct-3/4 and Sox2, constitute the transcriptional network that maintains pluripotency in embryonic stem (ES) cells. Previous reports suggested that some of these factors form a complex that binds the Oct-Sox element, a composite sequence consisting of closely juxtaposed Oct-3/4 binding and Sox2 binding sites. However, little is known regarding the components of the complex.

View Article and Find Full Text PDF

Contact-dependent cell communication has the potential to generate elaborate cell patterns, and this occurs in vivo. We used the Delta-Notch signaling system, consisting of the ligand Delta and the receptor Notch, to construct a positive feedback loop between adjacent cells to generate a propagating signal in cultured cells. To amplify the responses of Notch to Delta, we created a cell-cell positive feedback loop using an engineered transcriptional cascade and a Notch positive regulator, Lunatic fringe.

View Article and Find Full Text PDF