Relatively weak red photoluminescence of carbon dots (CDots) is a major challenge on the way to their successful implementation in biological and optoelectronic devices. We present a theoretical analysis of the interaction among the surface emission centers of CDots, showing that it may determine efficiency of the red photoluminescence of CDots. Based on the previous experimental studies, it is assumed that the optical response of the CDots is determined by the molecule-like subunits of polycyclic aromatic hydrocarbons (PAHs) attached to the CDots' surface.
View Article and Find Full Text PDFThis paper presents the first general theory of electronic band structure and intersubband transitions in three-layer semiconductor nanoplatelets. We find a dispersion relation and wave functions of the confined electrons and use them to analyze the band structure of core/shell nanoplatelets with equal thicknesses of the shell layers. It is shown that the energies of electrons localized inside the shell layers can be degenerate for certain electron wave vectors and certain core and shell thicknesses.
View Article and Find Full Text PDFCarbon dots (CDots) are a promising biocompatible nanoscale source of light, yet the origin of their emission remains under debate. Here, we show that all the distinctive optical properties of CDots, including the giant Stokes shift of photoluminescence and the strong dependence of emission color on excitation wavelength, can be explained by the linear optical response of the partially sp-hybridized carbon domains located on the surface of the CDots' sp-hybridized amorphous cores. Using a simple quantum chemical approach, we show that the domain hybridization factor determines the localization of electrons and the electronic bandgap inside the domains and analyze how the distribution of this factor affects the emission properties of CDots.
View Article and Find Full Text PDFThe availability of carbon dots (CDots) with bright red photoluminescence (PL) would significantly broaden the range of their biological and optoelectronic applications. We present a theoretical model that predicts that amino functionalization of CDots not only shifts their PL to longer wavelengths but also preserves large oscillator strengths of the fundamental radiative transitions of CDots. The model considers the optical response of amino-functionalized CDots determined by molecule-like subunits of polycyclic aromatic hydrocarbons with one, two, or three -NH groups at the CDots' surface; the excited state of those subunits is characterized by strong charge separation between the amino groups and CDots' carbon core.
View Article and Find Full Text PDFIn this Letter, we analyze circular dichroism (CD) enhancement of a helical semiconductor nanoribbon exposed to a weak homogenous electric field. By creating a periodic superlattice for the confined electrons, the electric field splits the electronic sub-bands into minibands and gives rise to critical points in the electronic density of states. We show that the modification of the electronic energy spectrum results in the appearance of new optically active transitions in the CD and absorption spectra, and that the CD signal of the nanoribbon is significantly enhanced at the critical points.
View Article and Find Full Text PDFQuantum confinement and collective excitations in perovskite quantum-dot (QD) supercrystals offer multiple benefits to the light emitting and solar energy harvesting devices of modern photovoltaics. Recent advances in the fabrication technology of low dimensional perovskites has made the production of such supercrystals a reality and created a high demand for the modelling of excitonic phenomena inside them. Here we present a rigorous theory of Frenkel excitons in lead halide perovskite QD supercrystals with a square Bravais lattice.
View Article and Find Full Text PDFThe search for the optimal geometry of optically active semiconductor nanostructures is making steady progress and has far-reaching benefits. Yet the helical springlike shape, which is very likely to provide a highly dissymmetric optical response, remains somewhat understudied theoretically. Here we comprehensively analyze the optical activity of semiconductor nanosprings using a fully quantum-mechanical model of their electronic subsystem and taking into account the anisotropy of their interaction with light.
View Article and Find Full Text PDFWe present rigorous analysis of optical activity of chiral semiconductor gammadions whose chirality in three dimensions is caused by the nonuniformity of thickness in the transverse plane. It is shown that such gammadions not only distinguish between the two circular polarizations upon scattering and reflection of light, like all two-dimensional semiconductor nanostructures with planar chirality do, but also exhibit circular dichroism and circularly polarized luminescence. Chiral semiconductor gammadions whose charge carriers are mostly confined to the arms are found to feature both high dissymmetry of optical response and a constant-sign circular dichroism signal over a wide frequency range.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
October 2017
We study the propagation of real-argument Laguerre-Gaussian beams beyond the paraxial approximation using the perturbation corrections to the complex-argument Laguerre-Gaussian beams derived earlier by Takenaka et al. [J. Opt.
View Article and Find Full Text PDFWe use quantum theory of molecular crystals to study collective excitations (excitons) of gyrotropic quantum-dot (QD) supercrystals with complex lattices consisting of two or more sublattices of semiconductor QDs. We illustrate the potentials of our approach by applying it to analytically calculate the linear permittivity tensor of supercrystals with two QDs per unit cell. The spatial dispersions of exciton energy bands and permittivity tensor components are examined in detail for two-dimensional supercrystals with a square lattice, which are relatively easy to fabricate in practice.
View Article and Find Full Text PDFEngineering nanostructured optical materials via the purposeful distortion of their constituent nanocrystals requires the knowledge of how various distortions affect the nanocrystals' electronic subsystem and its interaction with light. We use the geometric theory of defects in solids to calculate the linear permittivity tensor of semiconductor nanocrystals whose crystal lattice is arbitrarily distorted by imperfections or strains. The result is then employed to systematically analyze the optical properties of nanocrystals with spatial dispersion caused by screw dislocations and Eshelby twists.
View Article and Find Full Text PDFLarge surface-to-volume ratio, one-dimensional quantum confinement, and strong optical activity make chiral nanoscrolls ideal for the detection and sensing of small chiral molecules. Here, we present a simple physical model of chiroptical phenomena in multilayered tapered semiconductor nanoscrolls. Our model is based on a linear transformation of coordinates, which converts nanoscrolls into flat but topologically distorted nanoplatelets whose optical properties can then be treated analytically.
View Article and Find Full Text PDFWe develop a simple quantum-mechanical theory of interband absorption by semiconductor nanocrystals exposed to a dc electric field. The theory is based on the model of noninteracting electrons and holes in an infinitely deep quantum well and describes all the major features of electroabsorption, including the Stark effect, the Franz-Keldysh effect, and the field-induced spectral broadening. It is applicable to nanocrystals of different shapes and dimensions (quantum dots, nanorods, and nanoplatelets), and will prove useful in modeling and design of electrooptical devices based on ensembles of semiconductor nanocrystals.
View Article and Find Full Text PDFThe size dependence of the quantized energies of elementary excitations is an essential feature of quantum nanostructures, underlying most of their applications in science and technology. Here we report on a fundamental property of impurity states in semiconductor nanocrystals that appears to have been overlooked--the anticrossing of energy levels exhibiting different size dependencies. We show that this property is inherent to the energy spectra of charge carriers whose spatial motion is simultaneously affected by the Coulomb potential of the impurity ion and the confining potential of the nanocrystal.
View Article and Find Full Text PDFWe present a theory of phonon-assisted photoluminescence from a semiconductor quantum dot (QD) whose electron and phonon subsystems are resonantly coupled via the polar electron-phonon interaction. We show that the resonance-induced renormalization of the QD energy spectrum, leading to the formation of the polaron-like states, can be performed exactly in terms of the arbitrarily degenerate states of electron-hole pairs and the phonon modes of equal energies. Using the model of QDs with finite potential barriers for electron and holes leads to new selection rules of interband optical transitions and the three-particle interaction describing simultaneous absorption and/or emission of a photon and a phonon.
View Article and Find Full Text PDFThis work presents a comprehensive study of electroabsorption in CdSe colloidal quantum dots, nanorods, and nanoplatelets. We experimentally demonstrate that the exposure of the nanoplatelets to a dc electric field leads to strong broadening of their lowest-energy heavy-hole absorption band and drastically reduces the absorption efficiency within the band. These are results of the quantum-confined Stark and Franz–Keldysh effects.
View Article and Find Full Text PDFOptical methods, which allow the determination of the dominant channels of energy and phase relaxation, are the most universal techniques for the investigation of semiconductor quantum dots. In this paper, we employ the kinetic Pauli equation to develop the first generalized model of the pulse-induced photoluminescence from the lowest-energy eigenstates of a semiconductor quantum dot. Without specifying the shape of the excitation pulse and by assuming that the energy and phase relaxation in the quantum dot may be characterized by a set of phenomenological rates, we derive an expression for the observable photoluminescence cross section, valid for an arbitrary number of the quantum dot's states decaying with the emission of secondary photons.
View Article and Find Full Text PDF