The development and technological applications of molecular spin systems require versatile experimental techniques to characterize and control their static and dynamic magnetic properties. In the latter case, bulk spectroscopic and magnetometric techniques, such as AC magnetometry and pulsed electron paramagnetic resonance, are usually employed, showing high sensitivity, wide dynamic range, and flexibility. They are based on creating a nonequilibrium state either by changing the magnetic field or by applying resonant microwave radiation.
View Article and Find Full Text PDFIonic liquids (ILs) form a variety of nanostructures due to their amphiphilic nature. Recently, unusual structural phenomena have been found in glassy ILs near their glass transition temperatures; however, in all studied cases, IL cations and anions were in the form of separate moieties. In this work, we investigate for the first time such structural anomalies in zwitterionic IL glasses (ZILs), where the cation and anion are bound in a single molecule.
View Article and Find Full Text PDFUnderstanding the heterogeneous nano/microscopic structures of various organic glasses is fundamental and necessary for many applications. Recently, unusual structural phenomena have been observed experimentally in various organic glasses near their glass transition temperatures (Tg), including dibutyl phthalate (DBP). In particular, the librational motion of radical probe in the glass is progressively suppressed upon temperature increase.
View Article and Find Full Text PDFActive Pharmaceutical Ingredient-Ionic Liquids (API-ILs) draw increasing interest as a particular class of ILs that possess unusual physicochemical properties along with simultaneous potentials for pharmaceutical applications. Although nanostructuring phenomena were actively investigated in common ILs, their studies in API-ILs are scarce so far. In this work, using the complex methodology of Electron Paramagnetic Resonance (EPR) and dissolved spin probes, we investigate nanostructuring phenomena in a series of API-ILs: [Cmim][Ibu], [Cmim][Gly], and [Cmim][Sal] with = 2, 4, and 6, respectively.
View Article and Find Full Text PDFMany ionic liquids (ILs) can be mixed with water, forming either true solutions or emulsions. This favors their applications in many respects, but at the same time might strongly alter their physicochemical properties. A number of methods exist for studying the macroscopic properties of such mixtures, whereas understanding their characteristics at micro/nanoscale is rather challenging.
View Article and Find Full Text PDFIonic liquid (IL) glasses have recently drawn much interest as unusual media with unique physicochemical properties. In particular, anomalous suppression of molecular mobility in imidazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic Resonance (EPR) spectroscopy.
View Article and Find Full Text PDFIntriguing heterogeneities and nanostructural reorganizations of glassy ionic liquids (ILs) have recently been found using electron paramagnetic resonance (EPR) spectroscopy. Alkyl chains of IL cations play the key role in such phenomena and govern the anomalous temperature dependence of local density and molecular mobility. In this paper we evidence and study similar manifestations in a variety of common non-IL glasses, which also contain molecules with alkyl chains.
View Article and Find Full Text PDFImidazolium Ionic Liquids (ILs) have been found to exhibit unusual nanostructuring behavior below their glass transition temperatures (Tg), which is ascribed to rearrangements in nonpolar domains formed by segregated alkyl chains. However, the dimensions required for such highly cooperative bulk phenomena are still unknown. In this work, we for the first time, investigate the effect of nanoconfinement on structural anomalies in imidazolium ILs.
View Article and Find Full Text PDFIntriguing nanostructuring anomalies have been recently observed in imidazolium ionic liquids (ILs) near their glass transition points, where local density around a nanocaged solute progressively grows up with temperature. Herewith, we for the first time demonstrate experimentally and theoretically, that these anomalies are governed by alkyl chains of cations and crucially depend on their length. Electron Paramagnetic Resonance (EPR) spectroscopy on a series of ILs [Cmim]BF (n = 0-12) shows that only the chains with n = 3-10 favor anomaly.
View Article and Find Full Text PDFIonic liquids (ILs) show a variety of unusual and intriguing properties on a molecular level. Recently, a new type of structural anomaly occurring in neat ILs near their glass transition temperatures () has been found. In particular, the coexistence of two types of IL environments was observed, one of which progressively suppresses the molecular mobility upon temperature increase within ∼(-60 K) and .
View Article and Find Full Text PDFTriarylmethyl (TAM) radicals have become widely used free radicals in the past few years. Their electron spins have long relaxation times and narrow electron paramagnetic resonance (EPR) lines, which make them an important class of probes and tags in biological applications and materials science. In this work, we propose a new approach to characterize librations by means of TAM radicals.
View Article and Find Full Text PDFUnusual physical and chemical properties of ionic liquids (ILs) open up prospects for various applications. We report the first observation of density/rigidity heterogeneities in a series of ILs near the glass transition temperature ( T) by means of pulse electron paramagnetic resonance (EPR). Unprecedented suppression of molecular mobility is evidenced near the glass transition, which is assigned to unusual structural rearrangements of ILs on the nanometer scale.
View Article and Find Full Text PDFMolecular-level properties of ionic liquids (ILs) draw an increasing interest. Several informative experimental approaches for investigation of nano/miscrostructuring phenomena and local viscosity/rigidity of ILs use probe molecules sensitive to microenvironment along with suitable detection techniques. In this work, we for the first time investigate capabilities of photoexcited triplet fullerenes to probe local properties of ILs, with time-resolved electron paramagnetic resonance (TR EPR) being a sensitive detection tool.
View Article and Find Full Text PDFMicroscopic molecular organization and heterogeneities in ionic liquids (ILs) are of significant fundamental and applied interest. Although many theoretical studies have been dedicated to this topic, the development of experimental methods for studying such heterogeneities is still in demand. In this work we propose a new approach for the characterization of microscopic rigidity and heterogeneities in ILs using stochastic librations (small angle motions) of the nitroxide radicals as a probe.
View Article and Find Full Text PDF