The capillary system immediately responds to many pathologies and environmental conditions. Accurate monitoring of its functioning often enables early detection of various diseases related to disorders in skin microcirculation. To expand the scope of capillaroscopy application, it is reasonable to visualize and assess blood microcirculation exactly in the areas of inflamed skin.
View Article and Find Full Text PDFThe zebrafish () is an increasingly popular animal model biological system. In cardiovascular research, it has been used to model specific cardiac phenomena as well as to identify novel therapies for human cardiovascular disease. While the zebrafish cardiovascular system functioning is well examined at larval stages, the mechanisms by which vessel activity is initiated remain a subject of intense investigation.
View Article and Find Full Text PDFWe report on the noninvasive method for in vivo study of fish's cardiovascular system, that is, the heart and the structure of vessels that carry blood throughout the body. The proposed approach is based on combined photoplethysmographic and videocapillaroscopic microscopic imaging and enables noncontact two-dimensional mapping of blood volume changes. We demonstrate that the obtained data allows precise measurements of heartbeat, blood flow velocity and other important parameters (see Videos S1 and S2).
View Article and Find Full Text PDFEvaluation of skin microcirculation allows for the assessment of functional states for neuroendocrine and endothelial regulation. We present a novel method to visualize skin microvessels in any area of the body, which is in contrast to classical capillaroscopy, in which the application areas are limited to the nailfold and retina capillaries. The technique is based on microscopic video-image analysis.
View Article and Find Full Text PDFPhotoplethysmography (PPG) devices are widely used in clinical practice but the origin of PPG signal is still under debating. The classical theory assumes that the PPG waveform stems from variations of blood volume in pulsating arteries. In this research we analysed high-speed video recordings of capillaries in a fingernail bed.
View Article and Find Full Text PDFThe approach of defining quantum corrections on nuclear dynamics of molecular systems incorporated approximately into selected degrees of freedom, is described. The approach is based on the Madelung-de-Broglie-Bohm formulation of time-dependent quantum mechanics which represents a wavefunction in terms of an ensemble of trajectories. The trajectories follow classical laws of motion except that the quantum potential, dependent on the wavefunction amplitude and its derivatives, is added to the external, classical potential.
View Article and Find Full Text PDF