Publications by authors named "Mikhail V Samsonov"

Saturated free fatty acids are thought to play a critical role in metabolic disorders associated with obesity, insulin resistance, type 2 diabetes (T2D), and their vascular complications via effects on the vascular endothelium. The most abundant saturated free fatty acid, palmitate, exerts lipotoxic effects on the vascular endothelium, eventually leading to cell death. Shear stress activates the endothelial AMP-activated protein kinase (AMPK), a cellular energy sensor, and protects endothelial cells from lipotoxicity, however their relationship is uncertain.

View Article and Find Full Text PDF

Hyperglycemia is a hallmark of type 2 diabetes implicated in vascular endothelial dysfunction and cardiovascular complications. Many in vitro studies identified endothelial apoptosis as an early outcome of experimentally modeled hyperglycemia emphasizing cell demise as a significant factor of vascular injury. However, endothelial apoptosis has not been observed in vivo until the late stages of type 2 diabetes.

View Article and Find Full Text PDF

Hyperlipidemia manifested by high blood levels of free fatty acids (FFA) and lipoprotein triglycerides is critical for the progression of type 2 diabetes (T2D) and its cardiovascular complications via vascular endothelial dysfunction. However, attempts to assess high FFA effects in endothelial culture often result in early cell apoptosis that poorly recapitulates a much slower pace of vascular deterioration in vivo and does not provide for the longer-term studies of endothelial lipotoxicity in vitro. Here, we report that palmitate (PA), a typical FFA, does not impair, by itself, endothelial barrier and insulin signaling in human umbilical vein endothelial cells (HUVEC), but increases NO release, reactive oxygen species (ROS) generation, and protein labeling by malondialdehyde (MDA) hallmarking oxidative stress and increased lipid peroxidation.

View Article and Find Full Text PDF

Background: Malondialdehyde (MDA), glyoxal (GO), and methylglyoxal (MGO) levels increase in atherosclerosis and diabetes patients. Recent reports demonstrate that GO and MGO cause vascular endothelial barrier dysfunction whereas no evidence is available for MDA.

Methods: To compare the effects of MDA, GO, or MGO on endothelial permeability, we used human EA.

View Article and Find Full Text PDF

Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility including smooth muscle contraction, cell migration, cytokinesis, receptor capping, secretion, etc. Inhibition of MLCK activity in endothelial and epithelial monolayers using cell-permeant peptide Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys (PIK, Peptide Inhibitor of Kinase) allows protecting the barrier capacity, suggesting a potential medical use of PIK. However, low stability of L-PIK in a biological milieu prompts for development of more stable L-PIK analogues for use as experimental tools in basic and drug-oriented biomedical research.

View Article and Find Full Text PDF