RNA-binding proteins (RBPs) are central components of gene regulatory networks. The differentiation of heterocysts in filamentous cyanobacteria is an example of cell differentiation in prokaryotes. Although multiple non-coding transcripts are involved in this process, no RBPs have been implicated thus far.
View Article and Find Full Text PDFExcessive deposition of fibrillar collagen in the interstitial extracellular matrix (ECM) of human lung tissue causes fibrosis, which can ultimately lead to organ failure. Despite our understanding of the molecular mechanisms underlying the disease, no cure for pulmonary fibrosis has yet been found. We screened a drug library and found that dextromethorphan (DXM), a cough expectorant, reduced the amount of excess fibrillar collagen deposited in the ECM in cultured primary human lung fibroblasts, a bleomycin mouse model, and a cultured human precision-cut lung slice model of lung fibrosis.
View Article and Find Full Text PDFInsect biomass is declining globally, likely driven by climate change and pesticide use, yet systematic studies on the effects of various chemicals remain limited. In this work, we used a chemical library of 1024 molecules-covering insecticides, herbicides, fungicides, and plant growth inhibitors-to assess the impact of sublethal pesticide doses on insects. In , 57% of chemicals affected larval behavior, and a higher proportion compromised long-term survivability.
View Article and Find Full Text PDFPeptidoglycan (PG), a mesh-like structure which is the primary component of the bacterial cell wall, is crucial to maintain cell integrity and shape. While most bacteria rely on penicillin binding proteins (PBPs) for crosslinking, some species also employ LD-transpeptidases (LDTs). Unlike PBPs, the essentiality and biological functions of LDTs remain largely unclear.
View Article and Find Full Text PDFThermal proteome profiling (TPP) is a proteome wide technology that enables unbiased detection of protein drug interactions as well as changes in post-translational state of proteins between different biological conditions. Statistical analysis of temperature range TPP (TPP-TR) datasets relies on comparing protein melting curves, describing the amount of non-denatured proteins as a function of temperature, between different conditions (e.g.
View Article and Find Full Text PDFIntracellular bacterial pathogens hijack the protein machinery of infected host cells to evade their defenses and cultivate a favorable intracellular niche. The intracellular pathogen Salmonella enterica subsp. Typhimurium (STm) achieves this by injecting a cocktail of effector proteins into host cells that modify the activity of target host proteins.
View Article and Find Full Text PDFAlthough human tenocytes and dermal fibroblasts have shown promise in tendon engineering, no tissue engineered medicine has been developed due to the prolonged time required to develop an implantable device. Considering that macromolecular crowding has the potential to substantially accelerate the development of functional tissue facsimiles, herein we compared human tenocyte and dermal fibroblast behaviour under standard and macromolecular crowding conditions to inform future studies in tendon engineering. Basic cell function analysis made apparent the innocuousness of macromolecular crowding for both cell types.
View Article and Find Full Text PDFA hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding.
View Article and Find Full Text PDFDrug combinations can expand options for antibacterial therapies but have not been systematically tested in Gram-positive species. We profiled ~8,000 combinations of 65 antibacterial drugs against the model species Bacillus subtilis and two prominent pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Thereby, we recapitulated previously known drug interactions, but also identified ten times more novel interactions in the pathogen S.
View Article and Find Full Text PDFThermal proteome profiling (TPP) has significantly advanced the field of drug discovery by facilitating proteome-wide identification of drug targets and off-targets. However, TPP has not been widely applied for high-throughput drug screenings, since the method is labor intensive and requires a lot of measurement time on a mass spectrometer. Here, we present Single-tube TPP with Uniform Progression (STPP-UP), which significantly reduces both the amount of required input material and measurement time, while retaining the ability to identify drug targets for compounds of interest.
View Article and Find Full Text PDFA hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding.
View Article and Find Full Text PDFTo explore favourable niches while avoiding threats, many bacteria use a chemotaxis navigation system. Despite decades of studies on chemotaxis, most signals and sensory proteins are still unknown. Many bacterial species release D-amino acids to the environment; however, their function remains largely unrecognized.
View Article and Find Full Text PDFNegative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly.
View Article and Find Full Text PDFIntraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2.
View Article and Find Full Text PDFIn biological systems, liquid and solid-like biomolecular condensates may contain the same molecules but their behaviour, including movement, elasticity, and viscosity, is different on account of distinct physicochemical properties. As such, it is known that phase transitions affect the function of biological condensates and that material properties can be tuned by several factors including temperature, concentration, and valency. It is, however, unclear if some factors are more efficient than others at regulating their behaviour.
View Article and Find Full Text PDFThe complexity of the functional proteome extends considerably beyond the coding genome, resulting in millions of proteoforms. Investigation of proteoforms and their functional roles is important to understand cellular physiology and its deregulation in diseases but challenging to perform systematically. Here we applied thermal proteome profiling with deep peptide coverage to detect functional proteoform groups in acute lymphoblastic leukemia cell lines with different cytogenetic aberrations.
View Article and Find Full Text PDFCellular functionality relies on a well-balanced, but highly dynamic proteome. Dysfunction of mitochondrial protein import leads to the cytosolic accumulation of mitochondrial precursor proteins which compromise cellular proteostasis and trigger a mitoprotein-induced stress response. To dissect the effects of mitochondrial dysfunction on the cellular proteome as a whole, we developed pre-post thermal proteome profiling.
View Article and Find Full Text PDFPost-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs.
View Article and Find Full Text PDFPost-translational modifications (PTMs) regulate various aspects of protein function, including degradation. Mass spectrometric methods relying on pulsed metabolic labeling are popular to quantify turnover rates on a proteome-wide scale. Such data have traditionally been interpreted in the context of protein proteolytic stability.
View Article and Find Full Text PDFTracking proteins' biophysical characteristics on a proteome-wide scale can provide valuable information on their functions and interactions. Thermal proteome profiling (TPP) is a multiplexed quantitative proteomics approach that measures changes in protein thermal stability-a key biophysical property-across different cellular states. Developed in 2014, as a target-deconvolution assay for drugs and other small molecules, TPP has since evolved to a system-level biochemical omics technique providing insights into context-dependent changes in protein states.
View Article and Find Full Text PDFThe ubiquitous presence of toxic arsenate (As) in the environment has raised mechanisms of resistance in all living organisms. Generally, bacterial detoxification of As relies on its reduction to arsenite (As) by ArsC, followed by the export of As by ArsB. However, how pathogenic species resist this metalloid remains largely unknown.
View Article and Find Full Text PDFNeuronal stimulation induced by the brain-derived neurotrophic factor (BDNF) triggers gene expression, which is crucial for neuronal survival, differentiation, synaptic plasticity, memory formation, and neurocognitive health. However, its role in chromatin regulation is unclear. Here, using temporal profiling of chromatin accessibility and transcription in mouse primary cortical neurons upon either BDNF stimulation or depolarization (KCl), we identify features that define BDNF-specific chromatin-to-gene expression programs.
View Article and Find Full Text PDFRetrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA (msDNA). Despite decades of research on the biosynthesis of msDNA, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT.
View Article and Find Full Text PDF