Purpose: Progressive choroid and retinal pigment epithelial (RPE) degeneration causing vision loss is a unique characteristic of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), a fatty acid oxidation disorder caused by a common c.1528G>C pathogenic variant in HADHA, the α subunit of the mitochondrial trifunctional protein (TFP). We established and characterized an induced pluripotent stem cell (iPSC)-derived RPE cell model from cultured skin fibroblasts of patients with LCHADD and tested whether addition of wildtype (WT) HAHDA could rescue the phenotypes identified in LCHADD-RPE.
View Article and Find Full Text PDFA new approach to attenuating pathological inflammatory reactions by buffering the eicosanoid pathways with oxidation-resistant hexadeuterated arachidonic acid (D-ARA) is discussed. Enzymatic processing of ARA, released by phospholipase A2, by lipoxygenases, cyclooxygenases, and cytochromes yields a wide range of bioactive eicosanoids, including pro-inflammation, pro-angiogenesis and pro-thrombosis species that, when produced in excess, are an underlying cause of pathology. Conversely, some products of ARA oxidation possess pro-resolving properties.
View Article and Find Full Text PDFFerroptosis, an iron-dependent form of cell death driven by lipid peroxidation, provides a potential treatment avenue for drug-resistant cancers and may play a role in the pathology of some degenerative diseases. Identifying the subcellular membranes essential for ferroptosis and the sequence of their peroxidation will illuminate drug discovery strategies and ferroptosis-relevant disease mechanisms. In this study, we employed fluorescence and stimulated Raman scattering imaging to examine the structure-activity-distribution relationship of ferroptosis-modulating compounds.
View Article and Find Full Text PDFRu-based catalysis results in highly unsaturated fatty acid (HUFA) ethyl esters (EE) deuterated to various extents. The products carry H (D) mainly at their -allylic positions, where they are resistant to autoxidation compared to natural HUFA and are promising as neurological and retinal drugs. We characterized the extent of deuteration at each allylic position of docosa-4,7,10,13,16,19-hexaenoic acid deuterated to completion at -allylic and allylic positions (D-DHA) by two-dimensional (2D) and high-field (600 and 950 MHz) NMR.
View Article and Find Full Text PDFPolyunsaturated fatty acyl chains (PUFAs) concentrate in the brain and give rise to numerous oxidative chemical degradation products. It is widely assumed that these products are the result of free radical chain reactions, and reactions of this type have been demonstrated in preparations where a single PUFA substrate species predominates. However, it is unclear whether such reactions can occur in the biologically complex milieu of lipid membranes where PUFA substrates are a minority species, and where diverse free radical scavengers or other quenching mechanisms are present.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA; 22:6n-3) rich photoreceptors function in a highly oxidizing microenvironment. Lipid peroxidation and inflammation contribute to initiation and progression of eye diseases including age-related macular degeneration (AMD). Deuteration of DHA at the bis-allylic positions (D-DHA) increases its resilience to oxidative damage in vitro.
View Article and Find Full Text PDFLong-chain polyunsaturated fatty acids (PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. However, enriching the lipid membrane with PUFAs increases the potential for peroxidation in oxidative environments (e.
View Article and Find Full Text PDFArachidonic acid (ARA) is a major component of lipid bilayers as well as the key substrate for the eicosanoid cascades. ARA is readily oxidized, and its non-enzymatic and enzymatic oxidation products induce inflammatory responses in nearly all tissues, including lung tissues. Deuteration at bis-allylic positions substantially decreases the overall rate of ARA oxidation when hydrogen abstraction is an initiating event.
View Article and Find Full Text PDFOxidative stress plays a central role in age-related macular degeneration (AMD). Iron, a potent generator of hydroxyl radicals through the Fenton reaction, has been implicated in AMD. One easily oxidized molecule is docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in photoreceptor membranes.
View Article and Find Full Text PDFGlutathione peroxidase 4 (GPX4), as the only enzyme in mammals capable of reducing esterified phospholipid hydroperoxides within a cellular context, protects cells from ferroptosis. We identified a homozygous point mutation in the GPX4 gene, resulting in an R152H coding mutation, in three patients with Sedaghatian-type spondylometaphyseal dysplasia. Using structure-based analyses and cell models, including patient fibroblasts, of this variant, we found that the missense variant destabilized a critical loop, which disrupted the active site and caused a substantial loss of enzymatic function.
View Article and Find Full Text PDFBackground: Progressive supranuclear palsy (PSP) is a progressive movement disorder associated with lipid peroxidation and intracerebral accumulation of tau. RT001 is a deuterium reinforced isotopologue of linoleic acid that prevents lipid peroxidation (LPO) through the kinetic isotope effect.
Methods: The effects of RT001 pre-treatment on various oxidative and bioenergetic parameters were evaluated in mesenchymal stem cells (MSC) derived from patients with PSP compared to controls.
Lipid peroxidation is a key to a portfolio of neurodegenerative diseases and plays a central role in α-synuclein (α-syn) toxicity, mitochondrial dysfunction and neuronal death, all key processes in the pathogenesis of Parkinson's disease (PD). Polyunsaturated fatty acids (PUFAs) are important constituents of the synaptic and mitochondrial membranes and are often the first molecular targets attacked by reactive oxygen species (ROS). The rate-limiting step of the chain reaction of ROS-initiated PUFAs autoxidation involves hydrogen abstraction at bis-allylic sites, which can be slowed down if hydrogens are replaced with deuteriums.
View Article and Find Full Text PDFBackground: Infantile neuroaxonal dystrophy (INAD) is a rare, autosomal recessive disease due to defects in and is associated with lipid peroxidation. RT001 is a di-deuterated form of linoleic acid that protects lipids from oxidative damage.
Methods: We evaluated the pharmacokinetics (PK), safety, and effectiveness of RT001 in two subjects with INAD (subject 1: 34 months; subject 2: 10 months).
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFOxidative stress is a common feature of genetic and idiopathic neurological diseases that thus far have been intractable to drug therapy. Polyunsaturated fatty acids (PUFAs) form cellular, mitochondrial, retinal, and other membranes highly important in neuronal function. However, PUFAs are susceptible to the noxious lipid peroxidation (LPO) chain reaction, which is a common feature of various neurological and age-related pathologies, making this pathway an attractive target for therapeutic intervention.
View Article and Find Full Text PDFOxidative stress plays a crucial role in developing and accelerating retinal diseases including age-related macular degeneration (AMD). Docosahexaenoic acid (DHA, C22:6, n-3), the main lipid constituent of retinal epithelial cell membranes, is highly prone to radical and enzymatic oxidation leading to deleterious or beneficial metabolites for retinal tissue. To inhibit radical oxidation while preserving enzymatic metabolism, deuterium was incorporated at specific positions of DHA, resulting in D-DHA when incorporated at position 6 and D-DHA when incorporated at the 6,9 -allylic positions.
View Article and Find Full Text PDFChemically reinforced essential fatty acids (FAs) promise to fight numerous age-related diseases including Alzheimer's, Friedreich's ataxia and other neurological conditions. The reinforcement is achieved by substituting the atoms of hydrogen at the bis-allylic methylene of these essential FAs with the isotope deuterium. This substitution leads to a significantly slower oxidation due to the kinetic isotope effect, inhibiting membrane damage.
View Article and Find Full Text PDFAutoxidation of polyunsaturated fatty acids (PUFAs) damages lipid membranes and generates numerous toxic by-products implicated in neurodegeneration, aging, and other pathologies. Abstraction of bis-allylic hydrogen atoms is the rate-limiting step of PUFA autoxidation, which is inhibited by replacing bis-allylic hydrogens with deuterium atoms (D-PUFAs). In cells, the presence of a relatively small fraction of D-PUFAs among natural PUFAs is sufficient to effectively inhibit lipid peroxidation (LPO).
View Article and Find Full Text PDFThe synthesis of signal lipids, including eicosanoids, is not fully understood, although it is key to the modulation of various inflammatory states. Recently, isotopologues of essential polyunsaturated fatty acids (PUFAs) deuterated at bis-allylic positions (D-PUFAs) have been proposed as inhibitors of non-enzymatic lipid peroxidation (LPO) in various disease models. Arachidonic acid (AA, 20:4 n-6) is the main precursor to several classes of eicosanoids, which are produced by cyclooxygenases (COX) and lipoxygenases (LOX).
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant neurodegenerative disease which has no effective treatment and is characterized by psychiatric disorders, motor alterations, and dementia, with the cognitive deficits representing a devastating aspect of the disorder. Oxidative stress and elevated levels of lipid peroxidation (LPO) products are found in mouse models and patients with HD, suggesting that strategies to reduce LPO may be beneficial in HD. In contrast with traditional antioxidants, substituting hydrogen with deuterium at bis-allylic sites in polyunsaturated fatty acids (D-PUFA) decreases the rate-limiting initiation step of PUFA autoxidation, a strategy that has shown benefits in other neurodegenerative diseases.
View Article and Find Full Text PDFLipoxygenases (LOXs) have been implicated as central players in ferroptosis, a recently characterized cell death modality associated with the accumulation of lipid hydroperoxides: the products of LOX catalysis. To provide insight on their role, human embryonic kidney cells were transfected to overexpress each of the human isoforms associated with disease, 5-LOX, p12-LOX, and 15-LOX-1, which yielded stable cell lines that were demonstrably sensitized to ferroptosis. Interestingly, the cells could be rescued by less than half of a diverse collection of known LOX inhibitors.
View Article and Find Full Text PDF