Publications by authors named "Mikhail S Kondratenko"

Omniphobic coatings effectively repelling water, oils, and other liquids are of great interest and have a broad number of applications including self-cleaning, anti-icing surfaces, biofouling protection, selective filtration, etc. To create such coatings, one should minimize the pinning force that resists droplet motion and causes contact angle hysteresis. The minimization of the free surface energy by means of the chemical modification of the solid surface is not enough to obtain a nonsticky slippery omniphobic surface.

View Article and Find Full Text PDF

In modern life, people face a wide number of sticky problems when adhesion is highly undesirable: water and dirt stick to clothes, useful materials stick to the walls of their containers and cannot be fully used, water sticking and freezing on airplane wings affects handling and can be dangerous, biological liquids can stick and form clots inside medical devices threatening patients' lives, etc. Slippery liquid-infused porous surfaces (SLIPSs) with pressure stable omniphobicity could help to solve these issues. Lubricant depletion from porous surface and subsequent degradation of omniphobic properties is the major problem for SLIPS.

View Article and Find Full Text PDF

The change in the pinning force during the transition from dry to oil-impregnated thin polymer films is studied for droplets of water and hexadecane. A careful variation of the oil amount in the films is performed by means of supercritical impregnation. The film thickness dependence on the oil content is measured using ellipsometry and compared to gel swelling theory estimates.

View Article and Find Full Text PDF

Novel composite membranes for high temperature polymer-electrolyte fuel cells (HT-PEFC) based on a poly[oxy-3,3-bis(4'-benzimidazol-2″-ylphenyl)phtalide-5″(6″)-diyl] (PBI-O-PhT) polymer with small amounts of added Zr were prepared. It was shown in a model reaction between zirconium acetylacetonate (Zr(acac)4) and benzimidazole (BI) that Zr-atoms are capable to form chemical bonds with BI. Thus, Zr may be used as a crosslinking agent for PBI membranes.

View Article and Find Full Text PDF