Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins.
View Article and Find Full Text PDFThe engineering of bispecific antibodies that exhibit optimal affinity and functional activity presents a significant scientific challenge. To tackle this, investigators employ an assortment of protein assay techniques, such as label-free interaction methodologies, which offer rapidity and convenience for the evaluation of extensive sample sets. These assays yield intricate data pertaining to the affinity towards target antigens and Fc-receptors, instrumental in predicting cellular test outcomes.
View Article and Find Full Text PDFBispecific antibodies (bsAbs) are some of the most promising biotherapeutics due to the versatility provided by their structure and functional features. bsAbs simultaneously bind two antigens or two epitopes on the same antigen. Moreover, they are capable of directing immune effector cells to cancer cells and delivering various compounds (radionuclides, toxins, and immunologic agents) to the target cells, thus offering a broad spectrum of clinical applications.
View Article and Find Full Text PDFTransmembrane prostate androgen-induced protein 1 (TMEPAI) is a single-span membrane protein, functionally involved in transforming growth factor beta signaling pathway. The particular protein presented in cells in three isoforms, which differs in the length of the soluble N-terminal extracellular domain, making it challenging for the immunochemical recognition. By using quantitative real-time polymerase chain reaction, we identified significant upregulation of PMEPA1 gene expression in malignant tissues of patients with gastric adenocarcinoma.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
December 2015
The study aimed to reveal cancer related mutations in DNA repair and cell cycle genes associated with chronic occupational exposure to gamma-radiation in personnel of the Siberian Group of Chemical Enterprises (SGCE). Mutations were analyzed by comparing genotypes of malignant tumors and matched normal tissues of 255 cancer patients including 98 exposed to external gamma-radiation (mean dose 128.1±150.
View Article and Find Full Text PDFThe aim of this study was to identify new protein markers of the intestinal and diffuse type gastric adenocarcinoma and to determine their relation to local relapses and distant metastasis. Using two-dimensional gel electrophoresis, we searched for proteins that are overexpressed in the intestinal and/or diffuse type gastric adenocarcinoma, as compared to matched normal mucosa samples with further change confirmation by Western blot. Expression of the selected proteins was further assessed by immunohistocemistry in a large panel of gastric adenocarcinoma with various clinicopathological features.
View Article and Find Full Text PDF