Organosilicate glass (OSG) films are a critical component in modern electronic devices, with their electrical properties playing a crucial role in device performance. This comprehensive review systematically examines the influence of chemical composition, vacuum ultraviolet (VUV) irradiation, and plasma treatment on the electrical properties of these films. Through an extensive survey of literature and experimental findings, we elucidate the intricate interplay between these factors and the resulting alterations in electrical conductivity, dielectric constant, and breakdown strength of OSG films.
View Article and Find Full Text PDFUV-induced photoluminescence of organosilica films with ethylene and benzene bridging groups in their matrix and terminal methyl groups on the pore wall surface was studied to reveal optically active defects and understand their origin and nature. The careful selection of the film's precursors and conditions of deposition and curing and analysis of chemical and structural properties led to the conclusion that luminescence sources are not associated with the presence of oxygen-deficient centers, as in the case of pure SiO. It is shown that the sources of luminescence are the carbon-containing components that are part of the low-k-matrix, as well as the carbon residues formed upon removal of the template and UV-induced destruction of organosilica samples.
View Article and Find Full Text PDFWe applied time-domain Brillouin scattering (TDBS) for the characterization of porogen-based organosilicate glass (OGS) films deposited by spin-on-glass technology and cured under different conditions. Although the chemical composition and porosity measured by Fourier-transform infrared (FTIR) spectroscopy and ellipsometric porosimetry (EP) did not show significant differences between the films, remarkable differences between them were revealed by the temporal evolution of the Brillouin frequency (BF) shift of the probe light in the TDBS. The observed modification of the BF was a signature of the light-induced modification of the films in the process of the TDBS experiments.
View Article and Find Full Text PDFOrganosilicate glass (OSG)-based porous low dielectric constant (low-) films with different molar ratios of 1,3,5-tris(triethoxysilyl)benzene to 1,3-bis(triethoxysilyl)benzene bridging organic groups (1:3 and 1:7) were spin-on deposited, followed by a soft bake in air and N at 150 °C and hard bake in air and N at 400 °C. Non-ionic template (Brij30) concentrations were varied from 0 to 41 wt% to control the porosity of the films. The chemical composition of the matrix of the films was evaluated and discussed with the shrinkage of the film during the curing, refractive indices, mechanical properties, -values, porosity and pore structure.
View Article and Find Full Text PDFA dataset in this report is regarding an article, "A detailed ellipsometric porosimetry and positron annihilation spectroscopy study of porous organosilicate glass films with various ratios of methyl terminal and ethylene bridging groups" [1]. The data of porous organosilicate glass (OSG) low-k films was obtained by Fourier-Transform Infrared spectroscopy (FTIR), Ellipsometric Porosimetry (EP), Photoluminescence (PL) Spectroscopy. The data shows that the mechanical properties of OSG low-k films are principally controlled by introducing both terminal methyl and bridging organic groups, and porosity with proper pore size.
View Article and Find Full Text PDFOrganosilicate glass-based porous low dielectic constant films with different ratios of terminal methyl to bridging organic (methylene, ethylene and 1,4-phenylene) groups are spin-on deposited by using a mixture of alkylenesiloxane with organic bridges and methyltrimethoxysilane, followed by soft baking at 120-200 °C and curing at 430 °C. The films' porosity was controlled by using sacrificial template Brij L4. Changes of the films' refractive indices, mechanical properties, -values, porosity and pore structure versus chemical composition of the film's matrix are evaluated and compared with methyl-terminated low- materials.
View Article and Find Full Text PDFA reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors - ranging from high-temperature cuprates to ultrathin superconducting films - that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior.
View Article and Find Full Text PDFSelf-assembled monolayers (SAMs) from an 11-cyanoundecyltrichlorosilane (CN-SAM) precursor were deposited on porous SiCOH low-k dielectrics with three different pore radii, namely, 1.7, 0.7, and lower than 0.
View Article and Find Full Text PDFThe impact of pore structure of nanoporous films on the measured elastic modulus is demonstrated for silica-based nanoporous low-k films that are fabricated using an alternative manufacturing sequence which allows a separate control of porosity and matrix properties. For this purpose, different experimental techniques for measuring the elastic properties were compared, including nanoindentation, laser-induced surface acoustic wave spectroscopy (LAwave), and ellipsometric porosimetry (EP). The link between the elastic response of these nanoporous materials and their internal pore structure was investigated using positronium annihilation lifetime spectroscopy (PALS), EP, and diffusion experiments.
View Article and Find Full Text PDFThis paper explores the effects of different plasma treatments on low dielectric constant (low-k) materials and the consequences for the growth behavior of atomic layer deposition (ALD) on these modified substrates. An O2 and a He/H2 plasma treatment were performed on SiCOH low-k films to modify their chemical surface groups. Transmission FTIR and water contact angle (WCA) analysis showed that the O2 plasma changed the hydrophobic surface completely into a hydrophilic surface, while the He/H2 plasma changed it only partially.
View Article and Find Full Text PDFTo use mesoporous silicas as low-k materials, the pore entrances must be really small to avoid diffusion of metals that can increase the dielectric constant of the low-k dielectric. In this paper we present a new method to narrow the pores of mesoporous materials through grafting of a cyclic-bridged organosilane precursor. As mesoporous material, the well-studied MCM-41 powder was selected to allow an easy characterization of the grafting reactions.
View Article and Find Full Text PDFEllipsometric porosimetry (EP) is a handy technique to characterize the porosity and pore size distribution of porous thin films with pore diameters in the range from below 1 nm up to 50 nm and for the characterization of porous low-k films especially. Atomic layer deposition (ALD) can be used to functionalize porous films and membranes, e.g.
View Article and Find Full Text PDFA new strategy to seal mesoporous low-k thin films with a pore size of 3 nm has been developed. This is achieved by spin-coating of a self-assembled carbon-bridged organosilica layer followed by a grafting with hexamethyl disilazane.
View Article and Find Full Text PDFRevealing defects and inhomogeneities of physical and chemical properties beneath a surface or an interface with in-depth nanometric resolution plays a pivotal role for a high degree of reliability in nanomanufacturing processes and in materials science more generally. (1, 2) Nanoscale noncontact depth profiling of mechanical and optical properties of transparent sub-micrometric low-k material film exhibiting inhomogeneities is here achieved by picosecond acoustics interferometry. On the basis of the optical detection through the time-resolved Brillouin scattering of the propagation of a picosecond acoustic pulse, depth profiles of acoustical velocity and optical refractive index are measured simultaneously with spatial resolution of tens of nanometers.
View Article and Find Full Text PDFNanoporous low-kappa films were manufactured by using a 3-step process: co-deposition of a skeleton and porogens by PECVD, porogen removal by remote plasma and UV cure. In this study, the influence of both the variation of the porogen load and the different types of UV-cures on several film characteristics were investigated. Improved kappa-values were observed for increased porogen to skeleton ratios and a broad band cure, where the wavelength of the photons is always higher than 200 nm.
View Article and Find Full Text PDFA superconducting state is characterized by the gap in the electronic density of states, which vanishes at the superconducting transition temperature T(c). It was discovered that in high-temperature superconductors, a noticeable depression in the density of states, the pseudogap, still remains even at temperatures above T(c). Here, we show that a pseudogap exists in a conventional superconductor, ultrathin titanium nitride films, over a wide range of temperatures above T(c).
View Article and Find Full Text PDFIn this paper, we present a method for growing copper-based nanowires. The method is based on the unusual modification of a halogenated copper surface by exposure to a helium plasma. The nanowires have diameters ranging between 50 and 150 nm and lengths up to 50 microm.
View Article and Find Full Text PDFSpin-on zeolite films deposited from Silicalite-1 nanocrystal suspensions prepared by hydrothermal treatment of clear solutions have the required properties for insulating media in microelectronics. However, on the scale of the feature sizes in on-chip interconnects of a few tens of nanometers, their homogeneity is still insufficient. We discovered a way to overcome this problem by combining the advantages of the clear solution approach of Silicalite-1 synthesis with a sol-gel approach.
View Article and Find Full Text PDFWe present a study on the hydrophobization of spin-on Silicalite-1 zeolite films through silylation with trimethylchlorosilane. Microporous and micro-mesoporous Silicalite-1 films were synthesized by spin coating of suspensions of Silicalite-1 nanozeolite crystallized for different times. Ellipsometric porosimetry with toluene and water adsorbates reveals that silylation decreases the porosity and makes the films hydrophobic.
View Article and Find Full Text PDFSynchronized oscillators are ubiquitous in nature, and synchronization plays a key part in various classical and quantum phenomena. Several experiments have shown that in thin superconducting films, disorder enforces the droplet-like electronic texture--superconducting islands immersed into a normal matrix--and that tuning disorder drives the system from superconducting to insulating behaviour. In the vicinity of the transition, a distinct state forms: a Cooper-pair insulator, with thermally activated conductivity.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2006
Materials with a low dielectric constant are required as interlayer dielectrics for the on-chip interconnection of ultra-large-scale integration devices to provide high speed, low dynamic power dissipation and low cross-talk noise. The selection of chemical compounds with low polarizability and the introduction of porosity result in a reduced dielectric constant. Integration of such materials into microelectronic circuits, however, poses a number of challenges, as the materials must meet strict requirements in terms of properties and reliability.
View Article and Find Full Text PDFEllipsometric porosimetry was used to determine the adsorption isotherms of toluene, methanol, and water on b-oriented Silicalite-1 coatings with a thickness of less than ca. 250 nm and to obtain adsorption kinetics. The adsorption isotherms are of sufficient quality to reveal several aspects of the pore structure such as the adsorbate capacity and the adsorbate/framework affinity.
View Article and Find Full Text PDF