The brain synaptic circuitry is formed as a result of pre-defined genetic programs and sensory experience during postnatal development. Perineuronal nets ensheath synaptic boutons and control several crucial features of the synapse physiology. Formation of the perineuronal net microstructure during the brain development remains largely unstudied.
View Article and Find Full Text PDFA family of five male siblings (three survivors at 48, 53 and 58 years old; two deceased at 8 months old and 2.5 years old) demonstrating significant phenotypic variability ranging from intermediate to the myosclerotic like Bethlem myopathy is presented. Whole-exome sequencing (WES) identified a new homozygous missense mutation chr21:47402679 T > C in the canonical splice donor site of the second intron (c.
View Article and Find Full Text PDFPerineuronal net (PNN) is a highly structured portion of the CNS extracellular matrix (ECM) regulating synaptic plasticity and a range of pathologic conditions including posttraumatic regeneration and epilepsy. Here we studied Wisteria floribunda agglutinin-stained histological sections to quantify the PNN size and enrichment of chondroitin sulfates in mouse brain and spinal cord. Somatosensory cortex sections were examined during the period of PNN establishment at postnatal days 14, 21 and 28.
View Article and Find Full Text PDFHerein we present a clinical case of the Caroli syndrome caused by the compound heterozygous mutation in the PKHD1 gene. Histopathological assessment of liver detected biliary cirrhosis, numerous dilated bile ducts of various sizes, hyperplastic cholangiocytes containing a large amount of acid mucopolysaccharides, decreased ß-tubulin expression and increased proliferation of cholangiocytes. A significant proportion of hepatic tissue was composed of giant cysts lined with a single layer of cholangiocytes, containing pus and bile in its lumen and surrounded by granulation tissue.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2019
Artificial tissue-engineered grafts offer a potential alternative to autologous tissue grafts for patients, which can be traumatic. After decellularizing Papio hamadryas esophagus and studying the morphology and physical properties of the extracellular matrix (ECM), we generated electrospun polyamide-6 based scaffolds to mimic it. The scaffolds supported a greater mechanical load than the native ECM and demonstrated similar 3D microstructure, with randomly aligned fibers, 90% porosity, 29 μm maximal pore size, and average fiber diameter of 2.
View Article and Find Full Text PDFPlectinopathies are orphan diseases caused by gene mutations. is encoding the protein plectin, playing a role in linking cytoskeleton components in various tissues. In this study, we describe the clinical case of a 26-year-old patient with an early onset plectinopathy variant "limb-girdle muscle dystrophy type 2Q," report histopathological and ultrastructural findings in m.
View Article and Find Full Text PDFLimb-girdle muscular dystrophy type 2 (LGMD2B) is a mild form of dysferlinopathy, characterized by limb weakness and wasting. It is an autosomal recessive disease, with currently 140 mutations in the LGMD2B gene identified. Lack of functional dysferlin inhibits muscle fiber regeneration in voluntary muscles, the main pathological finding in LGMD2B patients.
View Article and Find Full Text PDFTo date, over 30 genes with mutations causing limb-girdle muscle dystrophy have been described. Dysferlinopathies are a form of limb-girdle muscle dystrophy type 2B with an incidence ranging from 1:1,300 to 1:200,000 in different populations. In 1996, Dr.
View Article and Find Full Text PDFPerineuronal nets (PNN) ensheath GABAergic and glutamatergic synapses on neuronal cell surface in the central nervous system (CNS), have neuroprotective effect in animal models of Alzheimer disease and regulate synaptic plasticity during development and regeneration. Crucial insights were obtained recently concerning molecular composition and physiological importance of PNN but the microstructure of the network remains largely unstudied. Here we used histochemistry, fluorescent microscopy and quantitative image analysis to study the PNN structure in adult mouse and rat neurons from layers IV and VI of the somatosensory cortex.
View Article and Find Full Text PDF