Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred.
View Article and Find Full Text PDFA recent sequencing study has shown that two common Caribbean corals, Montastraea cavernosa and Siderastrea siderea, each consist of four genetically distinct lineages in the Florida Keys. These lineages are specialised to a certain depth and, to a lesser extent, to nearshore or offshore habitats. We hypothesised that the lineages' environmental specialisation is at least in part due to regulatory evolution, which would manifest as the emergence of groups of coregulated genes ('modules') demonstrating lineage-specific responses to different reef environments.
View Article and Find Full Text PDFGene flow is important for maintaining the genetic diversity required for adaptation to environmental disturbances, though gene flow may be limited by site fidelity in small coastal sharks. Bonnethead sharks ()-a small coastal hammerhead species-demonstrate site fidelity, as females are philopatric while males migrate to mediate gene flow. Consequently, bonnetheads demonstrate population divergence with distance, and Atlantic populations are genetically distinct from those of the Gulf of Mexico.
View Article and Find Full Text PDFThe partnership between corals and their intracellular algal symbionts has long been a textbook example of a mutually beneficial association. Here I argue that this view has been made obsolete by a steady accumulation of evidence over the past three decades. The coral-algal relationship is perhaps better viewed as one of domestication - think of it like a cattle farm, in which the coral is the farmer and the algae are the cows.
View Article and Find Full Text PDFCoral bleaching, the stress-induced breakdown of coral-algal symbiosis, threatens reefs globally. Paradoxically, despite adverse fitness effects, corals bleach annually, even outside of abnormal temperatures. This generally occurs shortly after the once-per-year mass coral spawning.
View Article and Find Full Text PDFAs coral reefs continue to decline due to climate change, the role of coral epigenetics (specifically, gene body methylation, GBM) in coral acclimatization warrants investigation. The evidence is currently conflicting. In diverse animal phyla, the baseline GBM level is associated with gene function: continuously expressed "housekeeping" genes are typically highly methylated, while inducible context-dependent genes have low or no methylation at all.
View Article and Find Full Text PDFFor sessile organisms at high risk from climate change, phenotypic plasticity can be critical to rapid acclimation. Epigenetic markers like DNA methylation are hypothesized as mediators of plasticity; methylation is associated with the regulation of gene expression, can change in response to ecological cues, and is a proposed basis for the inheritance of acquired traits. Within reef-building corals, gene-body methylation (gbM) can change in response to ecological stressors.
View Article and Find Full Text PDFMortality rates of marine fish larvae are incredibly high and can determine year-class strength. The major causes of larval mortality are predation and starvation, and the performance of larvae in survival skills that can mitigate this mortality (predator evasion, foraging) varies among individuals and cohorts, but the causes of the variation are not known. Transcriptomics can link gene expression variation to phenotypic variation at the whole-system level to investigate the molecular basis of behavioural variation.
View Article and Find Full Text PDFRestriction-site-associated DNA sequencing (RADseq) has become an accessible way to obtain genome-wide data in the form of single-nucleotide polymorphisms (SNPs) for phylogenetic inference. Nonetheless, how differences in RADseq methods influence phylogenetic estimation is poorly understood because most comparisons have largely relied on conceptual predictions rather than empirical tests. We examine how differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non-model frog groups.
View Article and Find Full Text PDFProcesses governing genetic diversity and adaptive potential in reef-building corals are of interest both for fundamental evolutionary biology and for reef conservation. Here, we investigated the possibility of "sweepstakes reproductive success" (SRS) in a broadcast spawning coral, Acropora hyacinthus, at Yap Island, Micronesia. SRS is an extreme yearly variation in the number of surviving offspring among parents.
View Article and Find Full Text PDFAncient DNA (aDNA) has been applied to evolutionary questions across a wide variety of taxa. Here, for the first time, we utilized aDNA from millennia-old fossil coral fragments to gain new insights into a rapidly declining western Atlantic reef ecosystem. We sampled four Acropora palmata fragments (dated 4215 BCE to 1099 CE) obtained from two Florida Keys reef cores.
View Article and Find Full Text PDFThe global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective.
View Article and Find Full Text PDFMicrofragmentation is the act of cutting corals into small pieces (~1 cm) to accelerate the growth rates of corals relative to growth rates observed when maintaining larger-sized fragments. This rapid tissue and skeletal expansion technique offers great potential for supporting reef restoration, yet the biological processes and tradeoffs involved in microfragmentation-mediated accelerated growth are not well understood. Here we compared growth rates across a range of successively smaller fragment sizes in multiple genets of reef-building corals, and .
View Article and Find Full Text PDFBackground: As human activity alters the planet, there is a pressing need to understand how organisms adapt to environmental change. Of growing interest in this area is the role of epigenetic modifications, such as DNA methylation, in tailoring gene expression to fit novel conditions. Here, we reanalyzed nine invertebrate (Anthozoa and Hexapoda) datasets to validate a key prediction of this hypothesis: changes in DNA methylation in response to some condition correlate with changes in gene expression.
View Article and Find Full Text PDFAs sea surface temperatures increase, many coral species that used to harbour symbionts of the genus Cladocopium have become colonized with the thermally tolerant genus, Durusdinium. Here, we asked how gene expression in the symbionts of one genus changes depending on the abundance of another symbiont genus within the same coral host, and what effect this interaction has on the host. Symbiont gene expression was overwhelmingly driven by whether the genus was the minority or the majority within the host, which affected 79% (Durusdinium) and 96% (Cladocopium) of all genes.
View Article and Find Full Text PDFForensic Sci Int Genet
November 2021
Next-generation sequencing technology has revolutionized genotyping in many fields of study, yet parentage analysis often still relies on microsatellite markers that are costly to generate and are currently available only for a limited number of species. 2b-RAD sequencing (2b-RAD) is a DNA sequencing technique developed for ecological population genomics that utilizes type IIB restriction enzymes to generate consistent, uniform fragments across samples. This technology is inexpensive, effective with low DNA inputs, and robust to DNA degradation.
View Article and Find Full Text PDFBackground: Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species.
View Article and Find Full Text PDFRampant coral disease, exacerbated by climate change and other anthropogenic stressors, threatens reefs worldwide, especially in the Caribbean. Physically isolated yet genetically connected reefs such as Flower Garden Banks National Marine Sanctuary (FGBNMS) may serve as potential refugia for degraded Caribbean reefs. However, little is known about the mechanisms and trade-offs of pathogen resistance in reef-building corals.
View Article and Find Full Text PDFAs DNA sequencing technologies and methods for delimiting species with genomic data become more accessible and numerous, researchers have more tools than ever to investigate questions in systematics and phylogeography. However, easy access to sophisticated computational tools is not without its drawbacks. Choosing the right approach for one's question can be challenging when presented with multitudinous options, some of which fail to distinguish between species and intraspecific population structure.
View Article and Find Full Text PDFBroadcast-spawning coral species have wide geographical ranges spanning strong environmental gradients, but it is unclear how much spatially varying selection these gradients actually impose. Strong divergent selection might present a considerable barrier for demographic exchange between disparate reef habitats. We investigated whether the cross-shelf gradient is associated with spatially varying selection in two common coral species, Montastraea cavernosa and Siderastrea siderea, in the Florida Keys.
View Article and Find Full Text PDFInterrogation of chromatin modifications, such as DNA methylation, has the potential to improve forecasting and conservation of marine ecosystems. The standard method for assaying DNA methylation (whole genome bisulphite sequencing), however, is currently too costly to apply at the scales required for ecological research. Here, we evaluate different methods for measuring DNA methylation for ecological epigenetics.
View Article and Find Full Text PDFMany broadly-dispersing corals acquire their algal symbionts (Symbiodiniaceae) "horizontally" from their environment upon recruitment. Horizontal transmission could promote coral fitness across diverse environments provided that corals can associate with divergent algae across their range and that these symbionts exhibit reduced dispersal potential. Here we quantified community divergence of Cladocopium algal symbionts in two coral host species (Acropora hyacinthus, Acropora digitifera) across two spatial scales (reefs on the same island, and between islands) across the Micronesian archipelago using microsatellites.
View Article and Find Full Text PDFAlthough reef-building corals are declining worldwide, responses to bleaching vary within and across species and are partly heritable. Toward predicting bleaching response from genomic data, we generated a chromosome-scale genome assembly for the coral We obtained whole-genome sequences for 237 phenotyped samples collected at 12 reefs along the Great Barrier Reef, among which we inferred little population structure. Scanning the genome for evidence of local adaptation, we detected signatures of long-term balancing selection in the heat-shock co-chaperone We conducted a genome-wide association study of visual bleaching score for 213 samples, incorporating the polygenic score derived from it into a predictive model for bleaching in the wild.
View Article and Find Full Text PDFAs climate change progresses, reef-building corals must contend more often with suboptimal conditions, motivating a need to understand coral stress response. Here, we test the hypothesis that there is a stereotyped transcriptional response that corals enact under all stressful conditions, functionally characterized by downregulation of growth, and activation of cell death, response to reactive oxygen species, immunity, and protein folding and degradation. We analyse RNA-seq and Tag-Seq data from 14 previously published studies and supplement them with four new experiments involving different stressors, totaling over 600 gene expression profiles from the genus Acropora.
View Article and Find Full Text PDF