Publications by authors named "Mikhail Masharin"

Ultrafast all-optical modulation with optically resonant nanostructures is an essential technology for high-speed signal processing on a compact optical chip. Key challenges that exist in this field are relatively low and slow modulations in the visible range as well as the use of expensive materials. Here we develop an ultrafast all-optical modulator based on MAPbBr perovskite metasurface supporting exciton-polariton states with exceptional points.

View Article and Find Full Text PDF

Detection of hazardous volatile organic and inorganic species is a crucial task for addressing human safety in the chemical industry. Among these species, there are hydrogen halides (HX, X = Cl, Br, I) vastly exploited in numerous technological processes. Therefore, the development of a cost-effective, highly sensitive detector selective to any HX gas is of particular interest.

View Article and Find Full Text PDF

Exciton-polaritons offer a versatile platform for realization of all-optical integrated logic gates due to the strong effective optical nonlinearity resulting from the exciton-exciton interactions. In most of the current excitonic materials there exists a direct connection between the exciton robustness to thermal fluctuations and the strength of the exciton-exciton interaction, making materials with the highest levels of exciton nonlinearity applicable at cryogenic temperatures only. Here, we show that strong polaronic effects, characteristic for perovskite materials, allow overcoming this limitation.

View Article and Find Full Text PDF

The outstanding optical properties and multiphoton absorption of lead halide perovskites make them promising for use as fluorescence tags in bioimaging applications. However, their poor stability in aqueous media and biological fluids significantly limits their further use for and applications. In this work, we have developed a universal approach for the encapsulation of lead halide perovskite nanocrystals (PNCs) (CsPbBr and CsPbI) as water-resistant fluorescent markers, which are suitable for fluorescence bioimaging.

View Article and Find Full Text PDF

Halide perovskite nanowire-based lasers have become a powerful tool for modern nanophotonics, being deeply subwavelength in cross-section and demonstrating low-threshold lasing within the whole visible spectral range owing to the huge gain of material even at room temperature. However, their emission directivity remains poorly controlled because of the efficient outcoupling of radiation through their subwavelength facets working as pointlike light sources. Here, we achieve directional lasing from a single perovskite CsPbBr nanowire by imprinting a nanograting on its surface, which provides stimulated emission outcoupling to its vertical direction with a divergence angle around 2°.

View Article and Find Full Text PDF

Halide perovskite nanomaterials are widely used in optoelectronics and photonics due to their outstanding luminescent properties, whereas their strong multiphoton absorption makes them prospective for bioimaging. Nonetheless, instability of perovskites in aqueous solutions is an important limitation that prevents their application in biology and medicine. Here, we demonstrate fluorescence and upconversion imaging in living cells by employing CsPbBr nanocrystals (NCs) that show an improved water-resistance (at least for 24 h) after their coating as individual particles with various silica-based shells.

View Article and Find Full Text PDF

The integration of nanoparticles (NPs) into functional materials is a powerful tool for the smart engineering of their physical properties. If properly designed and optimized, NPs possess unique optical, electrical, quantum, and other effects that will improve the efficiency of optoelectronic devices. Here, we propose a novel approach for the enhancement of perovskite light-emitting diodes (PeLEDs) based on electronic band structure deformation by core-shell NPs forming a metal-oxide-semiconductor (MOS) structure with an Au core and SiO2 shell located in the perovskite layer.

View Article and Find Full Text PDF

Luminescent composites based on entirely non-toxic, environmentally friendly compounds are in high demand for a variety of applications in photonics and optoelectronics. Carbon dots are a recently developed kind of luminescent nanomaterial that is eco-friendly, biocompatible, easy-to-obtain, and inexpensive, with a stable and widely tunable emission. Herein, we introduce luminescent composites based on carbon dots of different chemical compositions and with different functional groups at the surface which were embedded in a nanoporous silicate glass.

View Article and Find Full Text PDF