Publications by authors named "Mikhail Makarkin"

The search for novel therapeutic strategies to treat fungal diseases is of special importance nowadays given the emerging threat of drug resistance. Various particulate delivery systems are extensively being developing to enhance bioavailability, site-specific penetration, and therapeutic efficacy of antimycotics. Recently, we have designed a novel topical formulation for griseofulvin (Gf) drug, which is currently commercially available in oral dosage forms due to its limited skin permeation.

View Article and Find Full Text PDF

A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects' capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance.

View Article and Find Full Text PDF

Drug carriers based on polyelectrolyte microcapsules remotely controlled with an external magnetic field are a promising drug delivery system. However, the influence of capsule parameters on microcapsules' behavior in vivo is still ambiguous and requires additional study. Here, we discuss how the processes occurring in the blood flow influence the circulation time of magnetic polyelectrolyte microcapsules in mouse blood after injection into the blood circulatory system and their interaction with different blood components, such as WBCs and RBCs.

View Article and Find Full Text PDF

In modern digital microscopy, deconvolution methods are widely used to eliminate a number of image defects and increase resolution. In this review, we have divided these methods into classical, deep learning-based, and optimization-based methods. The review describes the major architectures of neural networks, such as convolutional and generative adversarial networks, autoencoders, various forms of recurrent networks, and the attention mechanism used for the deconvolution problem.

View Article and Find Full Text PDF

Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing.

View Article and Find Full Text PDF

Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections.

View Article and Find Full Text PDF