This paper investigates the partial differential equation for the evolving distribution of prostate-specific antigen (PSA) levels following radiotherapy. We also present results on the behavior of moments for the evolving distribution of PSA levels and estimate the probability of long-term treatment success and failure related to values of treatment and disease parameters. Results apply to a much wider range of parameter values than was considered in earlier studies, including parameter combinations that are patient specific.
View Article and Find Full Text PDFWe introduce a continuous stochastic model for the prostate-specific antigen (PSA) levels following radiotherapy and derive solutions for the associated partial differential (Kolmogorov-Chapman) equation. The solutions describe the evolution of the time-dependent density for PSA levels which take into account an absorbing condition along the boundary and various initial conditions. We include implications for single-dose and multi-dose radiation treatment regimens and discuss parameter estimation and sensitivity issues.
View Article and Find Full Text PDF