Publications by authors named "Mikhail M Otrokov"

This study delves into the intriguing properties of the 1H/1T-TaS van der Waals heterostructure, focusing on the transparency of the 1H layer to the charge density wave of the underlying 1T layer. Despite the sizable interlayer separation and metallic nature of the 1H layer, positive bias voltages result in a pronounced superposition of the 1T charge density wave structure on the 1H layer. The conventional explanation relying on tunneling effects proves insufficient.

View Article and Find Full Text PDF

Magnetic topological insulators (TIs) herald a wealth of applications in spin-based technologies, relying on the novel quantum phenomena provided by their topological properties. Particularly promising is the (MnBiTe)(BiTe) layered family of established intrinsic magnetic TIs that can flexibly realize various magnetic orders and topological states. High tunability of this material platform is enabled by manganese-pnictogen intermixing, whose amounts and distribution patterns are controlled by synthetic conditions.

View Article and Find Full Text PDF

Ferromagnetism is the collective alignment of atomic spins that retain a net magnetic moment below the Curie temperature, even in the absence of external magnetic fields. Reducing this fundamental property into strictly two-dimensions was proposed in metal-organic coordination networks, but thus far has eluded experimental realization. In this work, we demonstrate that extended, cooperative ferromagnetism is feasible in an atomically thin two-dimensional metal-organic coordination network, despite only ≈ 5% of the monolayer being composed of Fe atoms.

View Article and Find Full Text PDF

Using relativistic spin-polarized density functional theory calculations we investigate magnetism, electronic structure and topology of the ternary thallium gadolinium dichalcogenides TlGdZ2 (Z= Se and Te) as well as superlattices on their basis. We find TlGdZ2 to have an antiferromagnetic exchange coupling both within and between the Gd layers, which leads to frustration and a complex magnetic structure. The electronic structure calculations reveal both TlGdSe2 and TlGdTe2 to be topologically trivial semiconductors.

View Article and Find Full Text PDF

Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect, which is potentially useful for high-precision metrology, edge channel spintronics, and topological qubits.  The stable 2+ state of Mn enables intrinsic magnetic topological insulators. MnBi Te is, however, antiferromagnetic with 25 K Néel temperature and is strongly n-doped.

View Article and Find Full Text PDF

Magnetic proximity effect at the interface between magnetic and topological insulators (MIs and TIs) is considered to have great potential in spintronics as, in principle, it allows realizing the quantum anomalous Hall and topological magneto-electric effects (QAHE and TME). Although an out-of-plane magnetization induced in a TI by the proximity effect was successfully probed in experiments, first-principles calculations reveal that a strong electrostatic potential mismatch at abrupt MI/TI interfaces creates harmful trivial states rendering both the QAHE and TME unfeasible in practice. Here on the basis of recent progress in formation of planar self-assembled single layer MI/TI heterostructure (T.

View Article and Find Full Text PDF

Topological insulators are promising candidates for spintronic applications due to their topologically protected, spin-momentum locked and gapless surface states. The breaking of the time-reversal symmetry after the introduction of magnetic impurities, such as 3d transition metal atoms embedded in two-dimensional molecular networks, could lead to several phenomena interesting for device fabrication. The first step towards the fabrication of metal-organic coordination networks on the surface of a topological insulator is to investigate the adsorption of the pure molecular layer, which is the aim of this study.

View Article and Find Full Text PDF

The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal⁻organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T = 2.

View Article and Find Full Text PDF

A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.

View Article and Find Full Text PDF

Finding ways to create and control the spin-dependent properties of two-dimensional electron states (2DESs) is a major challenge for the elaboration of novel spin-based devices. Spin-orbit and exchange-magnetic interactions (SOI and EMI) are two fundamental mechanisms that enable access to the tunability of spin-dependent properties of carriers. The silicon surface of HoRhSi appears to be a unique model system, where concurrent SOI and EMI can be visualized and controlled by varying the temperature.

View Article and Find Full Text PDF

Graphene is one of the most promising materials for nanoelectronics owing to its unique Dirac cone-like dispersion of the electronic state and high mobility of the charge carriers. However, to facilitate the implementation of the graphene-based devices, an essential change of its electronic structure, a creation of the band gap should controllably be done. Brought about by two fundamentally different mechanisms, a sublattice symmetry breaking or an induced strong spin-orbit interaction, the band gap appearance can drive graphene into a narrow-gap semiconductor or a 2D topological insulator phase, respectively, with both cases being technologically relevant.

View Article and Find Full Text PDF

The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry.

View Article and Find Full Text PDF

Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface.

View Article and Find Full Text PDF

Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at.

View Article and Find Full Text PDF

With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One of the most severe challenges is to find appropriate interfaces between graphene and ferromagnetic layers, which are granting efficient injection of spin-polarized electrons.

View Article and Find Full Text PDF