We present a new perturbative full-shape analysis of BOSS galaxy clustering data, including the full combination of the galaxy power spectrum and bispectrum multipoles, baryon acoustic oscillations, and cross-correlations with the gravitational lensing of cosmic microwave background measured from Planck. Assuming the ΛCDM model, we constrain the matter density fraction Ω_{m}=0.3138±0.
View Article and Find Full Text PDFWe present a framework to compute amplitudes for the gravitational analog of the Raman process, a quasielastic scattering of waves off compact objects, in worldline effective field theory. As an example, we calculate third post-Minkowskian order [O(G^{3})], or two-loop, phase shifts for the scattering of a massless scalar field including all tidal effects and dissipation. Our calculation unveils two sources of the classical renormalization-group flow of dynamical Love numbers: a universal running independent of the nature of the compact object, and a running self-induced by tides.
View Article and Find Full Text PDFWe extract the black hole (BH) static tidal deformability coefficients (Love numbers) and their spin-0 and spin-1 analogs by comparing on-shell amplitudes for fields to scatter off a spinning BH in the worldline effective field theory and in general relativity. We point out that the general relativity amplitudes due to tidal effects originate entirely from the BH potential region. Thus, they can be separated from gravitational nonlinearities in the wave region, whose proper treatment requires higher order effective field theory loop calculations.
View Article and Find Full Text PDFNonlocal primordial non-Gaussianity (NLPNG) is a smoking gun of interactions in single-field inflationary models and can be written as a combination of the equilateral and orthogonal templates. We present the first constraints on these from the redshift-space galaxy power spectra and bispectra of the BOSS data. These are the first such measurements independent of the cosmic microwave background fluctuations.
View Article and Find Full Text PDFWe show that perturbations of massless fields in a black hole background enjoy a hidden SL(2,R)×U(1) ("Love") symmetry in the properly defined near zone approximation. Love symmetry mixes low- and high-frequency modes. Still, this approximate symmetry allows us to derive exact results about static tidal responses.
View Article and Find Full Text PDF