Publications by authors named "Mikhail Linetsky"

γ-Hydroxyalkenals, 4-hydroxynonenal (HNE) and phospholipid esters of 4-hydroxy-8-oxooctenoic acid (HOOA-PL), are produced from the alkyl and carboxyl termini of arachidonyl phospholipids by radical-induced oxidative cleavage. Metabolism of HNE by Michael addition of glutathione (GSH) followed by reduction of the aldehyde carbonyl produces a GSH derivative of 1,4-dihydroxynonane (DHN)-GSH. Analogous biochemistry was anticipated to produce a GSH derivative of 5,8-dihydroxyoctanoic acid (DHOA-GSH) that has structural and functional similarity to the cysteinyl leukotriene (LT)C.

View Article and Find Full Text PDF

Proteins in the eye lens have negligible turnover and therefore progressively accumulate chemical modifications during aging. Carbonyls and oxidative stresses, which are intricately linked to one another, predominantly drive such modifications. Oxidative stress leads to the loss of glutathione (GSH) and ascorbate degradation; this in turn leads to the formation of highly reactive dicarbonyl compounds that react with proteins to form advanced glycation end products (AGEs).

View Article and Find Full Text PDF

Oxidation of docosahexaenoate (DHA)-containing phospholipids in the cell plasma membrane leads to release of the α,β-unsaturated aldehyde 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone which is capable of inducing retinal pigmented epithelial (RPE) cell dysfunction. Previously, HOHA lactone was shown to induce apoptosis and angiogenesis, and to activate the alternative complement pathway. RPE cells metabolize HOHA lactone through enzymatic conjugation with glutathione (GSH).

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cell dysfunction and death play vital roles in age-related macular degeneration (AMD) pathogenesis. Previously we showed that oxidative cleavage of docosahexenoate (DHA) phospholipids generates an α,β-unsaturated aldehyde, 4-hydroxy-7-oxohept-4-enoic acid (HOHA) lactone, that forms ω-carboxyethylpyrrole (CEP) derivatives through adduction to proteins and ethanolamine phospholipids. CEP derivatives and autoantibodies accumulate in the retinas and blood plasma of individuals with AMD and are a biomarker of AMD.

View Article and Find Full Text PDF

Retinal degeneration is a form of neurodegenerative disease and is the leading cause of vision loss globally. The Toll-like receptors (TLRs) are primary components of the innate immune system involved in signal transduction. Here we show that TLR2 induces complement factors C3 and CFB, the common and rate-limiting factors of the alternative pathway in both retinal pigment epithelial (RPE) cells and mononuclear phagocytes.

View Article and Find Full Text PDF

Isoprostane endoperoxides generated by free radical-induced oxidation of arachidonates, and prostaglandin endoperoxides generated through enzymatic cyclooxygenation of arachidonate, rearrange nonenzymatically to isoprostanes and a family of stereo and structurally isomeric γ-ketoaldehyde seco-isoprostanes, collectively known as isolevuglandins (isoLGs). IsoLGs are stealthy toxins, and free isoLGs are not detected in vivo. Rather, covalent adducts are found to incorporate lysyl ε-amino residues of proteins or ethanolamino residues of phospholipids.

View Article and Find Full Text PDF

Oxidative cleavage of docosahexaenoate (DHA) in retinal pigmented epithelial (RPE) cells produces 4-hydroxy-7-oxohept-5-enoic acid (HOHA) esters of 2-lysophosphatidylcholine (PC). HOHA-PC spontaneously releases a membrane-permeant HOHA lactone that modifies primary amino groups of proteins and ethanolamine phospholipids to produce 2-(ω-carboxyethyl)pyrrole (CEP) derivatives. CEPs have significant pathological relevance to age-related macular degeneration (AMD) including activation of CEP-specific T-cells leading to inflammatory M1 polarization of macrophages in the retina involved in "dry AMD" and TLR2-dependent induction of angiogenesis that characterizes "wet AMD".

View Article and Find Full Text PDF

We previously discovered that oxidative cleavage of docosahexaenoate (DHA), which is especially abundant in the retinal photoreceptor rod outer segments and retinal pigmented endothelial (RPE) cells, generates 4-hydroxy-7-oxo-5-heptenoate (HOHA) lactone, and that HOHA lactone can enter RPE cells that metabolize it through conjugation with glutathione (GSH). The consequent depletion of GSH results in oxidative stress. We now find that HOHA lactone induces upregulation of the antioxidant transcription factor Nrf2 in ARPE-19 cells.

View Article and Find Full Text PDF

Purpose: The current study aimed to develop a three-dimensional (3D) dynamic oxygen-17 ( O) MR imaging method with high temporal and spatial resolution to delineate the kinetics of O water uptake and washout in the brains of mice with glioblastoma (GBM).

Methods: A 3D imaging method with a stack-of-stars golden-ratio-based radial sampling scheme was employed to acquire O signal in vivo. A k-space-weighted image reconstruction method was used to improve the temporal resolution while preserving spatial resolution.

View Article and Find Full Text PDF

Oxidative stress and angiogenesis have been implicated not only in normal phenomena such as tissue healing and remodeling but also in many pathological processes. However, the relationships between oxidative stress and angiogenesis still remain unclear, although oxidative stress has been convincingly demonstrated to influence the progression of angiogenesis under physiological and pathological conditions. The retina is particularly susceptible to oxidative stress because of its intensive oxygenation and high abundance of polyunsaturated fatty acyls.

View Article and Find Full Text PDF

Isolevuglandins (isoLGs) are stereo and structurally isomeric γ-ketoaldehydes produced through free radical-induced oxidation of arachidonates. Some isoLG isomers are also generated through enzymatic cyclooxygenation. Post-translational modification of proteins by isoLGs is associated with loss-of-function, cross-linking and aggregation.

View Article and Find Full Text PDF

4-Hydroxy-7-oxo-5-heptenic acid (HOHA)-lactone is a biologically active oxidative truncation product released (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation from docosahexaenoate lipids. We now report that HOHA-lactone readily diffuses into retinal pigmented epithelial (RPE) cells where it is metabolized. A reduced glutathione (GSH) Michael adduct of HOHA-lactone is the most prominent metabolite detected by LC-MS in both the extracellular medium and cell lysates.

View Article and Find Full Text PDF

2-(ω-Carboxyethyl)pyrrole (CEP) derivatives of proteins were previously shown to have significant pathological and physiological relevance to age-related macular degeneration, cancer and wound healing. Previously, we showed that CEPs are generated in the reaction of ε-amino groups of protein lysyl residues with 1-palmityl-2-(4-hydroxy-7-oxo-5-heptenoyl)-sn-glycero-3-phosphatidylcholine (HOHA-PC), a lipid oxidation product uniquely generated by oxidative truncation of docosahexanenate-containing phosphatidylcholine. More recently, we found that HOHA-PC rapidly releases HOHA-lactone and 2-lyso-PC (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation.

View Article and Find Full Text PDF

Oxidation of docosahexaenoate phospholipids produces 4-hydroxy-7-oxo-hept-5-eonyl phospholipids (HOHA-PLs) that react with protein lysyl ε-amino residues to generate 2-ω-carboxyethylpyrrole (CEP) derivatives, endogenous factors that induce angiogenesis in the retina and tumors. It seemed likely, but remained unproven, that HOHA-PLs react with ethanolamine phospholipids (EPs) in vivo to generate CEP-EPs. We now show that CEP-EPs are present in human blood at 4.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood.

View Article and Find Full Text PDF

α-Crystallin is a major protein in the human lens that is perceived to help to maintain the transparency of the lens through its chaperone function. In this study, we demonstrate that many lens proteins including αA-crystallin are acetylated in vivo. We found that K70 and K99 in αA-crystallin and, K92 and K166 in αB-crystallin are acetylated in the human lens.

View Article and Find Full Text PDF

Dideoxyosones (DDOs) are intermediates in the synthesis of advanced glycation endproducts (AGEs), such as pentosidine and glucosepane. Although the formation of pentosidine and glucosepane in the human lens has been firmly established, the formation of DDOs has not been demonstrated. The aim of this study was to develop a reliable method to detect DDOs in lens proteins.

View Article and Find Full Text PDF

The proteins of the human eye are highly susceptible to the formation of advanced glycation end products (AGEs) from the reaction of sugars and carbonyl compounds. AGEs progressively accumulate in the aging lens and retina and accumulate at a higher rate in diseases that adversely affect vision such as, cataract, diabetic retinopathy and age-related macular degeneration. In the lens AGEs induce irreversible changes in structural proteins, which lead to lens protein aggregation and formation of high-molecular-weight aggregates that scatter light and impede vision.

View Article and Find Full Text PDF

AlphaA-crystallin is a molecular chaperone; it prevents aggregation of denaturing proteins. We have previously demonstrated that upon modification by a metabolic alpha-dicarbonyl compound, methylglyoxal (MGO), alphaA-crystallin becomes a better chaperone. AlphaA-crystallin also assists in refolding of denatured proteins.

View Article and Find Full Text PDF

Human lens proteins (HLP) become chemically modified by kynurenines and advanced glycation end products (AGEs) during aging and cataractogenesis. We investigated the effects of kynurenines on AGE synthesis in HLP. We found that incubation with 5 mM ribose or 5 mM ascorbate produced significant quantities of pentosidine, and this was further enhanced in the presence of two different kynurenines (200-500 microM): N-formylkynurenine (Nfk) and kynurenine (Kyn).

View Article and Find Full Text PDF

Previous studies from this laboratory have shown that there are striking similarities between the yellow chromophores, fluorophores and modified amino acids released by proteolytic digestion from calf lens proteins ascorbylated in vitro and their counterparts isolated from aged and cataractous lens proteins. The studies reported in this communication were conducted to further investigate whether ascorbic acid-mediated modification of lens proteins could lead to the formation of lens protein aggregates capable of scattering visible light, similar to the high molecular aggregates found in aged human lenses. Ascorbic acid, but not glucose, fructose, ribose or erythrulose, caused the aggregation of calf lens proteins to proteins ranging from 2.

View Article and Find Full Text PDF

Incubation of fructose and glutathione leads to the formation of N-2-deoxy-glucos-2-yl glutathione as the major glycation product, with characteristic positive ion at 470 Th in LC-MS spectra. Glutathione disulfide and fructose generate two compounds: N-2-deoxy-glucos-2-yl glutathione disulfide (m/z=775 Th) and bis di-N,N'-2-deoxy-glucos-2-yl glutathione disulfide (m/z=937 Th). N-2-deoxy-glucos-2-yl glutathione is 2.

View Article and Find Full Text PDF

Formation of lanthionine, a dehydroalanine crosslink, is associated with aging of the human lens and cataractogenesis. In this study we investigated whether modification of lens proteins by glutathione could proceed through an alternative pathway: that is, by the formation of a nonreducible thioether bond between protein and glutathione. Direct ELISA of the reduced water-soluble and water-insoluble lens proteins from human cataractous, aged and bovine lenses showed a concentration-dependent immunoreactivity toward human nonreducible glutathionyl-lens proteins only.

View Article and Find Full Text PDF

Under the chromatographic conditions used in these studies we observed time- and concentration-dependent formation of N-1-Deoxy-fructos-1-yl glutathione as the major glycation product formed in the mixtures of GSH with glucose. N-1-Deoxy-fructos-1-yl glutathione had a characteristic positively charged ion with m/z=470 Th in its LC-MS spectra. Mixtures of glutathione disulfide and glucose generated two compounds: N-1-Deoxy-fructos-1-yl GSSG (m/z=775 Th) as major adduct and bis di-N, N'-1-Deoxy-fructos-1-yl GSSG (m/z=937 Th) as the minor one.

View Article and Find Full Text PDF

This study was conducted to develop a methodology for the purification and detection of histidinoalanine, lanthionine and lysinoalanine in the lens tissue. Cataractous and aged human lens proteins were hydrolysed and fractionated by using anion-exchange chromatography. The fraction containing the bulk of dehydroalanine crosslinks was derivatized with dansyl chloride and then separated and quantified by means of RP-HPLC.

View Article and Find Full Text PDF