Publications by authors named "Mikhail Laktionov"

The conformation of a polyelectrolyte (PE) brush grafted to the inner surface of a long cylindrical mesopore was described within analytical Poisson-Boltzmann strong stretching approximation. The internal structure of the PE brush, including brush thickness and radial density profile of monomer units, and radial distribution of electrostatic potential were analyzed as functions of the pore radius, degree of polymerization, and grafting density of the brush-forming PE chains as well as ionic strength of the solution. It is demonstrated that narrowing of the pore leads to a non-monotonous variation of the brush thickness, which passes through a maximum when the brush thickness becomes equal to the pore radius.

View Article and Find Full Text PDF

The self-consistent field Poisson-Boltzmann framework is applied to analyze equilibrium partitioning of ampholytic nanoparticles (NPs) between buffer solution and polyelectrolyte (PE) polyanionic brush. We demonstrate that depending on pH and salt concentration in the buffer solution, interactions between ionizable (acidic and basic) groups on the NP surface and electrostatic field created by PE brush may either lead to the spontaneous uptake of NPs or create an electrostatic potential barrier, preventing the penetration of NPs inside PE brush. The capability of PE brush to absorb or repel NPs is determined by the shape of the insertion free energy that is calculated as a function of NP distance from the grafting surface.

View Article and Find Full Text PDF

Polymer brushes are attractive as surface coatings for a wide range of applications, from fundamental research to everyday life, and also play important roles in biological systems. How colloids (e.g.

View Article and Find Full Text PDF

Polyelectrolyte hydrogels can absorb a large amount of water across an osmotic membrane as a result of their swelling pressure. On the other hand, the insoluble cross-linked hydrogel network enables dewatering under the influence of external (thermal and/or mechanical) stimuli. Moreover, from a thermodynamic perspective, a polyelectrolyte hydrogel is already an osmotic membrane.

View Article and Find Full Text PDF

The interaction of colloidal particles with a planar polymer brush immersed in a solvent of variable thermodynamic quality is studied by a numerical self-consistent field method combined with analytical mean-field theory. The effect of embedded particle on the distribution of polymer density in the brush is analyzed and the particle insertion free energy profiles are calculated for variable size and shape of the particles and sets of polymer-particle and polymer-solvent interaction parameters. In particular, both cases of repulsive and attractive interactions between particles and brush-forming chains are considered.

View Article and Find Full Text PDF

To study conformational transition occuring upon inferior solvent strength in a brush formed by linear or dendritically branched macromolecules tethered to the inner surface of cylindrical or planar (slit-like) pore, a self-consistent field analytical approach is employed. Variations in the internal brush structure as a function of variable solvent strength and pore radius, and the onset of formation of a hollow channel in the pore center are analysed. The predictions of analytical theory are supported and complemented by numerical modelling by a self-consistent field Scheutjens-Fleer method.

View Article and Find Full Text PDF

Weak polyampholytes and globular proteins among them can be efficiently absorbed from solutions by polyelectrolyte brushes or microgels even if the net charge of the polyampholyte is of the same sign as that of the brush/microgel. We use a mean-field approach for calculating the free energy of insertion of a probe polyampholyte molecule into a polyelectrolyte brush/microgel. We anticipate that the insertion of the polyampholyte into similarly charged brush/microgel may be thermodynamically favorable due to the gain in the cumulative re-ionization free energy of the pH-sensitive acidic and basic residues.

View Article and Find Full Text PDF