Publications by authors named "Mikhail Kolonin"

Immune checkpoint blockade therapy, transformative in some cancer types, has remained ineffective for patients with pancreatic cancer. The effects of sub-populations of cancer-associated fibroblasts (CAFs) on cancer progression and therapy resistance are incompletely understood. Here, the roles of CAFs expressing platelet-derived growth factor receptor beta (Pdgfrb) and of CAFs expressing markers of adipose stromal cells (ASCs) were analyzed in mice with pancreatic ductal adenocarcinoma.

View Article and Find Full Text PDF

In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function.

View Article and Find Full Text PDF

Objective: Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout.

View Article and Find Full Text PDF

It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC.

View Article and Find Full Text PDF

We identified a progenitor cell population highly enriched in samples from invasive and chemo-resistant carcinomas, characterized by a well-defined multigene signature including APOD, DCN, and LUM. This cell population has previously been labeled as consisting of inflammatory cancer-associated fibroblasts (iCAFs). The same signature characterizes naturally occurring fibro-adipogenic progenitors (FAPs) as well as stromal cells abundant in normal adipose tissue.

View Article and Find Full Text PDF

Cancer aggressiveness has been linked with obesity, and studies have shown that adipose tissue can enhance cancer progression. In this issue of Cancer Research, Hosni and colleagues discover a paracrine mechanism mediated by adipocyte precursor cells through which urothelial carcinomas become resistant to erdafitinib, a recently approved therapy inhibiting fibroblast growth factor receptors (FGFR). They identified neuregulin 1 (NRG1) secreted by adipocyte precursor cells as an activator of HER3 signaling that enables resistance.

View Article and Find Full Text PDF

Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.

View Article and Find Full Text PDF

Glucagon-like peptide-1 receptor agonists (GLP1RA) have been transformative for patients and clinicians in treating type-2 diabetes and obesity. Drugs of this class, the bioavailability of which is continuously improving, enable weight loss and control blood glucose with minimal unwanted side effects. Since adopting GLP1RA for treating metabolic diseases, animal and clinical studies have revealed their beneficial effects on several other pathologies, including cardiovascular diseases, neurodegeneration, kidney disease, and cancer.

View Article and Find Full Text PDF

Background: Alström Syndrome (AS), a multi-system disease caused by mutations in the gene, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and hepatosteatosis. How loss of ALMS1 causes this phenotype is poorly understood, but prior studies have circumstancially implicated impaired adipose tissue expandability. We set out to test this by comparing the metabolic effects of selective knockout in mesenchymal cells including preadipocytes to those of global knockout.

View Article and Find Full Text PDF

Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression.

View Article and Find Full Text PDF

Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis.

View Article and Find Full Text PDF

Mechanisms underlying anti-diabetic effects of GLP1 analogs remain incompletely understood. We observed that in prediabetic humans exenatide treatment acutely induces interleukin-6 (IL-6) secretion by monocytes and IL-6 in systemic circulation. We hypothesized that GLP1 analogs signal through IL-6 in adipose tissue (AT) and used the mouse model to test if IL-6 receptor (IL-6R) signaling underlies the effects of the GLP1-IL-6 axis.

View Article and Find Full Text PDF

Obesity is associated with increased cancer incidence and progression. However, the relationship between adiposity and cancer remains poorly understood at the mechanistic level. Here, we report that adipocytes from tumor-invasive mammary fat undergo de-differentiation to fibroblast-like precursor cells during tumor progression and integrate into the tumor microenvironment.

View Article and Find Full Text PDF

Obesity is associated with increased prostate cancer (PCa) progression and higher mortality, however, the mechanism(s) remain still unclear. Here, we investigated signaling by the ASC-secreted chemokine CXCL12 in a mouse allograft model of PCa and in HiMyc mice in the context of diet-induced obesity. Treatment of mice with CXCR4 antagonist inhibited CXCL12-induced signaling pathways, tumor growth and EMT in HMVP2 allograft tumors.

View Article and Find Full Text PDF

Dysregulation of lipid deposition into and mobilization from white adipose tissue (WAT) underlies various diseases. Long-chain fatty acids (LCFA) and cholesterol trafficking in and out of adipocytes is a process relying on transporters shuttling lipids from the plasma membrane (PM) to lipid droplets (LD). CD36 is the fatty acid translocase (FAT) that transports LCFA and cholesterol across the PM.

View Article and Find Full Text PDF

Background: During aging, perturbation of muscle progenitor cell (MPC) constituents leads to progressive loss of muscle mass and accumulation of adipose and fibrotic tissue. Mesenchymal stem cells (MSCs) give rise to adipocytes and fibroblasts that accumulate in injured and pathological skeletal muscle through constitutive activation of platelet-derived growth factor receptors (PDGFRs). Although the role of the PDGFRα has been widely explored, there is a paucity of evidence demonstrating the role of PDGFRβ in aged skeletal muscle.

View Article and Find Full Text PDF

Objective: Brown adipogenesis and thermogenesis in brown and beige adipose tissue (AT) involve vascular remodeling and sympathetic neuronal guidance. Here, we investigated the molecular mechanism coordinating these processes.

Methods: We used mouse models to identify the molecular target of a peptide CPATAERPC homing to the endothelium of brown and beige AT.

View Article and Find Full Text PDF

DNA Methyltransferase 3 A (DNMT3A) is an important facilitator of differentiation of both embryonic and hematopoietic stem cells. Heterozygous germline mutations in lead to Tatton-Brown-Rahman Syndrome (TBRS), characterized by obesity and excessive height. While DNMT3A is known to impact feeding behavior via the hypothalamus, here we investigated a role in adipocyte progenitors utilizing heterozygous knockout mice that recapitulate cardinal TBRS phenotypes.

View Article and Find Full Text PDF

The function of prohibitin-1 (PHB1) in adipocyte mitochondrial respiration, adaptive thermogenesis, and long-chain fatty acid (LCFA) metabolism has been reported. While intracellular PHB1 expression is ubiquitous, cell surface PHB1 localization is selective for adipocytes and endothelial cells of adipose tissue. The importance of PHB1 in adipose endothelium has not been investigated, and its vascular cell surface function has remained unclear.

View Article and Find Full Text PDF

Chemotherapy can impede cancer progression and is a well-demonstrated component of curative care for some patients with nonmetastatic cancer. However, cancer often relapses in high-risk patients due to acquired chemoresistance and progression to an incurable metastatic stage. There is building evidence from mouse models suggesting a possible stimulatory effect of chemotherapy on metastasis.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), caused by the loss of dystrophin, remains incurable. Reduction in muscle regeneration with DMD is associated with the accumulation of fibroadipogenic progenitors (FAPs) differentiating into myofibroblasts and leading to a buildup of the collagenous tissue aggravating DMD pathogenesis. Mesenchymal stromal cells (MSCs) expressing platelet-derived growth factor receptors (PDGFRs) are activated in muscle during DMD progression and give rise to FAPs promoting DMD progression.

View Article and Find Full Text PDF

Crotamine is a rattlesnake-derived toxin that causes fast-twitch muscle paralysis. As a cell-penetrating polypeptide, crotamine has been investigated as an experimental anti-cancer and immunotherapeutic agent. We hypothesized that molecules targeting crotamine could be designed to study its function and intervene in its adverse activities.

View Article and Find Full Text PDF