Phys Chem Chem Phys
November 2024
We propose a sparse computation method for optimizing the inference of neural networks in reinforcement learning (RL) tasks. Motivated by the processing abilities of the brain, this method combines simple neural network pruning with a delta-network algorithm to account for the input data correlations. The former mimics neuroplasticity by eliminating inefficient connections; the latter makes it possible to update neuron states only when their changes exceed a certain threshold.
View Article and Find Full Text PDFQuantum mechanics increasingly penetrates modern technologies but, due to its non-deterministic nature seemingly contradicting our classical everyday world, our comprehension often stays elusive. Arguing along the correspondence principle, classical mechanics is often seen as a theory for large systems where quantum coherence is completely averaged out. Surprisingly, it is still possible to reconstruct the coherent dynamics of a quantum bit (qubit) by using a classical model system.
View Article and Find Full Text PDFBulk nanomaterials with an open porosity offer exciting prospects for creating new functional materials for various applications in photonics, IR-THz optics, metamaterials, heterogeneous photocatalysis, monitoring and cleaning toxic impurities in the environment. However, their availability is limited by the complexity of controlling the process of synthesis of bulk 3D nanostructures with desired physicochemical and functional properties. In this paper, we performed a detailed analysis of influence of a silica monolayer chemically deposited on the surface of a monolithic ultraporous nanostructure, consisting of a 3D nanofibril network of aluminum oxyhydroxide, on the evolution of structure and morphology, chemical composition and phase transformations after heat treatment in the temperature range of 20-1700 °C.
View Article and Find Full Text PDFModern artificial intelligence (AI) systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the mammalian brain. In this article we discuss these limitations and ways to mitigate them. Next, we present an overview of currently available neuromorphic AI projects in which these limitations are overcome by bringing some brain features into the functioning and organization of computing systems (TrueNorth, Loihi, Tianjic, SpiNNaker, BrainScaleS, NeuronFlow, DYNAP, Akida, Mythic).
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAIDs), inhibitors of cyclooxygenase-2, an enzyme involved in the formation of anti-inflammatory prostaglandin PGE2, are the most common treatment for chronic inflammatory diseases, such as, for example, arthritis. One of the most commonly used drugs of this class is indomethacin, a derivative of indolylacetic acid. In this work, we studied the physicochemical properties of the phospholipid composition of indomethacin obtained earlier (codenamed "Indolip") and the effect of freeze drying on its parameters.
View Article and Find Full Text PDFLiposomes are nano-sized spherical vesicles composed of an aqueous core surrounded by one (or more) phospholipid bilayer shells. Owing to their high biocompatibility, chemical composition variability, and ease of preparation, as well as their large variety of structural properties, liposomes have been employed in a large variety of nanomedicine and biomedical applications, including nanocarriers for drug delivery, in nutraceutical fields, for immunoassays, clinical diagnostics, tissue engineering, and theranostics formulations. Particularly important is the role of liposomes in drug-delivery applications, as they improve the performance of the encapsulated drugs, reducing side effects and toxicity by enhancing its in vitro- and in vivo-controlled delivery and activity.
View Article and Find Full Text PDFAn approach for polymer-carbon nanotube (CNT) composite preparation is proposed based on a two-step supercritical fluid treatment. The first step, rapid expansion of a suspension (RESS) of CNTs in supercritical carbon dioxide, is used to de-bundle CNTs in order to simplify their mixing with polymer in solution. The ability of RESS pre-treatment to de-bundle CNTs and to cause significant bulk volume expansion is demonstrated.
View Article and Find Full Text PDFScattering techniques represent non-invasive experimental approaches and powerful tools for the investigation of structure and conformation of biomaterial systems in a wide range of distances, ranging from the nanometric to micrometric scale. More specifically, small-angle X-rays and neutron scattering and light scattering techniques represent well-established experimental techniques for the investigation of the structural properties of biomaterials and, through the use of suitable models, they allow to study and mimic various biological systems under physiologically relevant conditions. They provide the ensemble averaged (and then statistically relevant) information under in situ and conditions, and represent useful tools complementary to the various traditional imaging techniques that, on the contrary, reveal more local structural information.
View Article and Find Full Text PDFFully atomistic molecular dynamics simulations are employed to study impregnation of the poly(methyl methacrylate) (PMMA) matrix with carbamazepine (CBZ) in supercritical carbon dioxide. The simulation box consists of 108 macromolecules of the polymer sample with the polymerization degree of 100, 57 molecules of CBZ, and 242,522 CO molecules. The simulation is performed at 333 K and 20 MPa.
View Article and Find Full Text PDFThe swelling of a poly (methyl methacrylate) in supercritical carbon dioxide was studied by means of full atomistic classical molecular dynamics simulation. In order to characterize the polymer swelling, we calculated various properties related to the density, structure, and dynamics of polymer chains as a function of the simulation time, temperature, and pressure. In addition, we compared the properties of the macromolecular chains in supercritical CO with the properties of the corresponding bulk system at the same temperature and atmospheric pressure.
View Article and Find Full Text PDFModels of interaction between a poly(N-vinyl-2-pyrrolidone) macromolecule and a fragment of I-cellulose were built in a vacuum and water environment. The models were made to interpret the mechanism of interaction of the polymer and cellulose nanocrystals by the classical molecular dynamics method. The structural behavior of a poly(N-vinyl-2-pyrrolidone) macromolecule in water has been studied in terms of the radius of gyration, atom-atom radial distribution functions and number of hydrogen bonds.
View Article and Find Full Text PDFInteractions of charged nanoparticles with model bio-membranes provide important insights about the soft interaction involved and the physico-chemical parameters that influence lipid bilayers stability, thus providing key features of their cytotoxicity effects onto cellular membranes. With this aim, the self-assembly processes between polyamidoamine dendrimers (generation G = 2.0 and G = 4.
View Article and Find Full Text PDFIn spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2017
Lipids membranes, the primary component of the living cell, involve collective behaviour of numerous interacting molecules. The rich morphology and complex phase diagram of the lipid systems require different strategies in describing bio-membranes in order to capture the essential properties of self-assembly processes as well as the underling molecular collective phenomena involved in biological functions. Among the experimental methods used, the scattering techniques such as small angle neutrons and X-rays scattering (SANS and SAXS) are probably the most important experimental approaches for the structural investigation of bio-membranes and mixed lipids complex systems.
View Article and Find Full Text PDFBackground: Interactions of ligands with proteins imply changes in the properties of the macromolecules that may deeply modify their biological activities and conformations and allow them to acquire new and, sometimes, unexpected abilities. The flavonoid phloretin has several pharmacological properties that are starting to be elucidated, one of which is the well-known inhibition of glucose transport.
Methods: The interactions of phloretin to human serum albumin have been investigated by fluorescence, UV-visible, FTIR spectroscopy, native electrophoresis, protein ligand docking studies, fluorescence and scanning electron microscopy.
The development of smart nanocarriers for the delivery of therapeutic drugs has experienced considerable expansion in recent decades, with the development of new medicines devoted to cancer treatment. In this respect a wide range of strategies can be developed by employing liposome nanocarriers with desired physico-chemical properties that, by exploiting a combination of a number of suitable soft interactions, can facilitate the transit through the biological barriers from the point of administration up to the site of drug action. As a result, the materials engineer has generated through the bottom up approach a variety of supramolecular nanocarriers for the encapsulation and controlled delivery of therapeutics which have revealed beneficial developments for stabilizing drug compounds, overcoming impediments to cellular and tissue uptake, and improving biodistribution of therapeutic compounds to target sites.
View Article and Find Full Text PDFThe presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms.
View Article and Find Full Text PDFRecent experimental and numerical studies of the critical-temperature exponent ϕ for the superfluid-Bose-glass universality in three-dimensional systems report strong violations of the key quantum critical relation, ϕ=νz, where z and ν are the dynamic and correlation-length exponents, respectively; these studies question the conventional scaling laws for this quantum critical point. Using Monte Carlo simulations of the disordered Bose-Hubbard model, we demonstrate that previous work on the superfluid-to-normal-fluid transition-temperature dependence on the chemical potential (or the magnetic field, in spin systems), T_{c}∝(μ-μ_{c})^{ϕ}, was misinterpreting transient behavior on approach to the fluctuation region with the genuine critical law. When the model parameters are modified to have a broad quantum critical region, simulations of both quantum and classical models reveal that the ϕ=νz law [with ϕ=2.
View Article and Find Full Text PDFComput Intell Neurosci
September 2014
At present, it is obvious that different sections of nervous system utilize different methods for information coding. Primary afferent signals in most cases are represented in form of spike trains using a combination of rate coding and population coding while there are clear evidences that temporal coding is used in various regions of cortex. In the present paper, it is shown that conversion between these two coding schemes can be performed under certain conditions by a homogenous chaotic neural network.
View Article and Find Full Text PDFThe change of the Helmholtz free energy, internal energy, and entropy accompanying the mixing of acetone and methanol is calculated in the entire composition range by the method of thermodynamic integration using three different potential model combinations of the two compounds. In the first system, both molecules are described by the OPLS, and in the second system, both molecules are described by the original TraPPE force field, whereas in the third system a modified version of the TraPPE potential is used for acetone in combination with the original TraPPE model of methanol. The results reveal that, in contrast with the acetone-water system, all of these three model combinations are able to reproduce the full miscibility of acetone and methanol, although the thermodynamic driving force of this mixing is very small.
View Article and Find Full Text PDFWe describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.
View Article and Find Full Text PDFFaraday Discuss
March 2015
Molecular dynamics (MD) studies of hydrogen bonding (H-bonding) in liquid, sub- and supercritical methanol have been performed in a wide range of thermodynamic parameters of state, using various potential models and two H-bond criteria. It was shown that there is the universal correlation between the average number of H-bonds per molecule (n(HB)) and the mole fraction of H-bonded molecules (X(HB)) for the studied thermodynamic parameters of state. The same feature was observed for the correlations between fractions of molecules forming one (f1), two (f2), three (f3) H-bonds and X(HB).
View Article and Find Full Text PDFBinary mixtures of CO(2) with ethanol and with acetone are studied by computer simulation, including extensive free energy calculations done by the method of thermodynamic integration, at 313 K, i.e., above the critical point of CO(2) in the entire composition range.
View Article and Find Full Text PDF