In 2007, the Anaktuvuk River fire burned more than 1000 km of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014.
View Article and Find Full Text PDFAlthough three-dimensional (3D) seismic surveys have improved the success rate of exploratory drilling for oil and gas, the impacts have received little scientific scrutiny, despite affecting more area than any other oil and gas activity. To aid policy-makers and scientists, we reviewed studies of the landscape impacts of 3D-seismic surveys in the Arctic. We analyzed a proposed 3D-seismic program in northeast Alaska, in the northern Arctic National Wildlife Refuge, which includes a grid 63,000 km of seismic trails and additional camp-move trails.
View Article and Find Full Text PDFArctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca.
View Article and Find Full Text PDFMany areas of the Arctic are simultaneously affected by rapid climate change and rapid industrial development. These areas are likely to increase in number and size as sea ice melts and abundant Arctic natural resources become more accessible. Documenting the changes that have already occurred is essential to inform management approaches to minimize the impacts of future activities.
View Article and Find Full Text PDF