Int J Clin Exp Pathol
January 2008
We investigated the dynamics of autolytic damage of the cortical neurons in adult brains for 24 hours at room temperature (+20 degrees C) after cardiac arrest. The progressive histological and ultrastructural changes were documented using routine and immunohistochemical staining as well as electron microscopy. Our results demonstrated that there were no autolytic damages in the ultrastructure of cerebral neurons in the first 6 hours after warm cardiac arrest, in agreement with previous studies in other mammals.
View Article and Find Full Text PDFWe investigated the effect of electroconvulsive stimulation (ECS) on cerebral circulation in vivo using the method for measuring microcirculation in real time with the photosensitizer dye Photosense and the fiber optic spectrofluorometer LESA-01-BIOSPEC. We have found that electroconvulsive stimulation significantly improved cerebral microcirculation (fourfold higher comparing to the control cerebral perfusion) after 30 min of room-temperature cardiac arrest. Morphologic study of the brain tissue showed the absence of rouleaux formation of erythrocytes ("sludged blood") in the cerebral cortex microcirculation after the application of electrical stimulus.
View Article and Find Full Text PDF