We propose a multitask learning approach to learn the parameters of a compartmental discrete-time epidemic model from various data sources and use it to design optimal control strategies of human-mobility restrictions that both curb the epidemic and minimize the economic costs associated with implementing non-pharmaceutical interventions. We develop an extension of the SEIR epidemic model that captures the effects of changes in human mobility on the spread of the disease. The parameters of the model are learned using a multitask learning approach that leverages both data on the number of deaths across a set of regions, and cellphone data on individuals' mobility patterns specific to each region.
View Article and Find Full Text PDF