In this work, a coupled Monte Carlo Genetic Algorithm (MCGA) approach is used to optimize a gas phase uranium oxide reaction mechanism based on plasma flow reactor (PFR) measurements. The PFR produces a steady Ar plasma containing U, O, H, and N species with high temperature regions (3000-5000 K) relevant to observing UO formation via optical emission spectroscopy. A global kinetic treatment is used to model the chemical evolution in the PFR and to produce synthetic emission signals for direct comparison with experiments.
View Article and Find Full Text PDFThe predictive models that describe the fate and transport of radioactive materials in the atmosphere following a nuclear incident (explosion or reactor accident) assume that uranium-bearing particulates would attain chemical equilibrium during vapor condensation. In this study, we show that kinetically driven processes in a system of rapidly decreasing temperature can result in substantial deviations from chemical equilibrium. This can cause uranium to condense out in oxidation states (e.
View Article and Find Full Text PDFHigh-temperature chemistry in laser ablation plumes leads to vapor-phase speciation, which can induce chemical fractionation during condensation. Using emission spectroscopy acquired after ablation of a SrZrO target, we have experimentally observed the formation of multiple molecular species (ZrO and SrO) as a function of time as the laser ablation plume evolves. Although the stable oxides SrO and ZrO are both refractory, we observed emission from the ZrO intermediate at earlier times than SrO.
View Article and Find Full Text PDF