Publications by authors named "Mikhail Belozersky"

Serine peptidases (SPs) of the chymotrypsin S1A subfamily are an extensive group of enzymes found in all animal organisms, including insects. Here, we provide analysis of SPs in the yellow mealworm transcriptomes and genomes datasets and profile their expression patterns at various stages of ontogeny. A total of 269 SPs were identified, including 137 with conserved catalytic triad residues, while 125 others lacking conservation were proposed as non-active serine peptidase homologs (SPHs).

View Article and Find Full Text PDF

The long-term evolution experiment (PaLTEE) is the only running filamentous fungus study, which is still going on. The aim of our work is to trace the evolutionary dynamics of the accumulation of mutations in the genomes of eight haploid populations of The results of the genome-wide analysis of all of the lineages, performed 8 years after the start of the PaLTEE, are presented. Data analysis detected 312 single nucleotide polymorphisms (SNPs) and 39 short insertion-deletion mutations (indels) in total.

View Article and Find Full Text PDF

A detailed analysis of the complexes of proline-specific peptidases (PSPs) in the midgut transcriptomes of the larvae of agricultural pests and and in the genome of is presented. Analysis of the genome revealed 13 PSP sequences from the clans of serine and metal-dependent peptidases, of which 11 sequences were also found in the gut transcriptomes of both tenebrionid species' larvae. Studies of the localization of PSPs, evaluation of the expression level of their genes in gut transcriptomes, and prediction of the presence of signal peptides determining secretory pathways made it possible to propose a set of peptidases that can directly participate in the hydrolysis of food proteins in the larvae guts.

View Article and Find Full Text PDF

Wheat gliadins contain a large amount of glutamine- and proline-rich peptides which are not hydrolyzed by human digestive peptidases and can cause autoimmune celiac disease and other forms of gluten intolerance in predisposed people. Peptidases that efficiently cleave such immunogenic peptides can be used in enzyme therapy. The stored product insect pest efficiently hydrolyzes gliadins.

View Article and Find Full Text PDF

To date, there is no effective treatment for celiac disease (CD, gluten enteropathy), an autoimmune disease caused by gluten-containing food. Celiac patients are supported by a strict gluten-free diet (GFD). However, in some cases GFD does not negate gluten-induced symptoms.

View Article and Find Full Text PDF

Proline-specific peptidases (PSP) play a crucial role in the processing of fungal toxins, pheromones, and intracellular signaling. They are of particular interest to biotechnology, as they are able to hydrolyze proline-rich oligopeptides that give a bitter taste to food and can also cause an autoimmune celiac disease. We performed in silico analysis of PSP homologs in the genomes of 42 species of higher fungi which showed the presence of PSP homologs characteristic of various kingdoms of living organisms and belonging to different families of peptidases, including homologs of dipeptidyl peptidase 4 (DPP4) and prolyl aminopeptidase 1 found in almost all the studied fungal species.

View Article and Find Full Text PDF

is an important coleopteran model insect and agricultural pest from the Tenebrionidae family. We used RNA-Seq transcriptome data from to annotate trypsin-like sequences from the chymotrypsin S1 family of serine peptidases, including sequences of active serine peptidases (SerP) and their inactive homologs (SerPH) in transcriptomes. A total of 63 S1 family tryspin-like serine peptidase sequences were assembled.

View Article and Find Full Text PDF

New substrates with glutamine in the P1-position are introduced for the assay of peptidases from the C1 papain family, with a general formula of Glp-Phe-Gln-X, where Glp is pyroglutamyl and X is pNA (-nitroanilide) or AMC (4-amino-7-methylcoumaride). The substrates have a simple structure, and C1 cysteine peptidases of various origins cleave them with high efficiency. The main advantage of the substrates is their selectivity for cysteine peptidases of the C1 family.

View Article and Find Full Text PDF

Background: Proline specific peptidases (PSPs) are a unique group of enzymes that specifically cleave bonds formed by a proline residue. The study of PSPs is important due to their role in the maturation and degradation of peptide hormones and neuropeptides. In addition, changes in the activity of PSPs can result in pathological conditions, including various types of cancer.

View Article and Find Full Text PDF

This review deals with characteristics of peptidases of fungi whose life cycles are associated with insects to varying degrees. The review examines the characteristic features of the extracellular peptidases of entomopathogenic fungi, the dependence of the specificity of these peptidases on the ecological characteristics of the fungi, and the role of peptidases in the development of the pathogenesis. Data on the properties and physiological role of hydrolytic enzymes of symbiotic fungi in "fungal gardens" are also considered in detail.

View Article and Find Full Text PDF

A method is described for the direct detection of unstable cysteine peptidase activity in polyacrylamide gels after native electrophoresis using new selective fluorogenic peptide substrates, pyroglutamyl-phenylalanyl-alanyl-4-amino-7-methylcoumaride (Glp-Phe-Ala-AMC) and pyroglutamyl-phenylalanyl-alanyl-4-amino-7-trifluoromethyl-coumaride (Glp-Phe-Ala-AFC). The detection limit of the model enzyme papain was 17 pmol (0.29 μg) for Glp-Phe-Ala-AMC and 43 pmol (0.

View Article and Find Full Text PDF

Prolidase is a proline-specific metallopeptidase that cleaves imidodipeptides with C-terminal Pro residue. Prolidase was purified and characterized from the Tenebrio molitor larval midgut. The enzyme was localized in the soluble fraction of posterior midgut tissues, corresponding to a predicted cytoplasmic localization of prolidase according to the structure of the mRNA transcript.

View Article and Find Full Text PDF

Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database.

View Article and Find Full Text PDF

This study describes the design, synthesis, and use of selective peptide substrates for cysteine peptidases of the C1 papain family, important in many biological processes. The structure of the newly synthesized substrates is Glp-Xaa-Ala-Y (where Glp=pyroglutamyl; Xaa=Phe or Val; and Y=pNA [p-nitroanilide], AMC [4-amino-7-methylcoumaride], or AFC [4-amino-7-trifluoromethyl-coumaride]). Substrates were synthesized enzymatically to guarantee selectivity of the reaction and optical purity of the target compounds, simplifying the scheme of synthesis and isolation of products.

View Article and Find Full Text PDF

Prolyl carboxypeptidase (PRCP) is a lysosomal proline specific serine peptidase that also plays a vital role in the regulation of physiological processes in mammals. In this report, we isolate and characterize the first PRCP in an insect. PRCP was purified from the anterior midgut of larvae of a stored product pest, Tenebrio molitor, using a three-step chromatography strategy, and it was determined that the purified enzyme was a dimer.

View Article and Find Full Text PDF

A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin.

View Article and Find Full Text PDF

Sequences of peptidases with conserved motifs around the active site residues that are characteristic of trypsins (similar to trypsin peptidases, STP) were obtained from publicly-available fungal genomes and related databases. Among the 75 fungal genomes, 29 species of parasitic Ascomycota contained genes encoding STP and their homologs. Searches of non-redundant protein sequences, patented protein sequences, and expressed sequence tags resulted in another 18 STP sequences in 10 fungal species from Ascomycota, Basidiomycota, and Zygomycota.

View Article and Find Full Text PDF

Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in Tenebrio molitor larval midgut with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activity at pH 5.

View Article and Find Full Text PDF

Preparations of new low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat Fagopyrum esculentum seeds by chromatography of seed extracts on trypsin-Sepharose 4B, Mono-Q and Mono-S ion-exchangers. Their molecular masses, determined by mass spectrometry, were equal to 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c) and 6031 daltons (BWI-4c). All inhibitors possessed high pH-stability in the pH range 2-12 and thermostability.

View Article and Find Full Text PDF

Kinetic characteristics and effects on the growth of filamentous fungi of one of the main anionic protease inhibitors, BWI-1, isolated from buckwheat seeds, have been studied. The inhibition constants of bovine trypsin, chymotrypsin and cathepsin G from human granulocytes with BWI-1 were found to be 1.1, 67 and 200 nM, respectively.

View Article and Find Full Text PDF