The development of polymer-lipid hybrid nanoparticles (PLNs) is a promising area of research, as it can help increase the stability of cationic lipid carriers. Hybrid PLNs are core-shell nanoparticle structures that combine the advantages of both polymer nanoparticles and liposomes, especially in terms of their physical stability and biocompatibility. Natural polymers such as polyhydroxyalkanoate (PHA) can be used as a matrix for the PLNs' preparation.
View Article and Find Full Text PDFIn this study, the impact of different delivery systems on the cytokine-inducing, antiproliferative, and antitumor activities of short immunostimulatory double-stranded RNA (isRNA) was investigated. The delivery systems, consisting of the polycationic amphiphile 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20 tetraazahexacosan tetrahydrochloride (2X3), and the lipid-helper dioleoylphosphatidylethanolamine (DOPE), were equipped with polyethylene glycol lipoconjugates differing in molecular weight and structure. The main findings of this work are as follows: (i) significant activation of MCP-1 and INF-α, β, and γ production in CBA mice occurs under the action of isRNA complexes with liposomes containing lipoconjugates with long PEG chains, while activation of MCP-1 and INF-γ, but not INF-α or β, was observed under the action of isRNA lipoplexes containing lipoconjugates with short PEG chains; (ii) a pronounced antiproliferative effect on B16 melanoma cells in vitro, as well as an antitumor and hepatoprotective effect in vivo, was induced by isRNA pre-complexes with non-pegylated liposomes, while complexes containing lipoconjugates with long-chain liposomes were inactive; (iii) the antitumor activity of isRNA correlated with the efficiency of its accumulation in the cells and did not explicitly depend on the activation of cytokine and interferon production.
View Article and Find Full Text PDFCell-free antitumor vaccines represent a promising approach to immunotherapy of cancer. Here, we compare the antitumor potential of cell-free vaccines based on microvesicles derived from dendritic cells (DCs) with DC- and cationic-liposome-based vaccines using a murine model of drug-resistant lymphosarcoma RLS40 in vivo. The vaccines were the following: microvesicle vaccines—cytochalasin B-induced membrane vesicles (CIMVs) obtained from DCs loaded with total tumor RNA using cholesterol/spermine-containing cationic liposomes L or mannosylated liposomes ML; DC vaccines—murine DCs loaded with total tumor-derived RNA using the same liposomes; and liposomal vaccines—lipoplexes of total tumor-derived RNA with liposomes L or ML.
View Article and Find Full Text PDFUnsymmetric lipophilic polyamine derivatives are considered as potential antitumor agents. Here, a series of novel symmetric lipophilic polyamines (LPAs) based on norspermine and triethylenetetramine (TETA) backbones bearing alkyl substituents with different lengths (from decyl to octadecyl) at C(1) atom of glycerol were synthesized. Performed screening of the cytotoxicity of novel compounds on the panel of tumor cell lines (MCF-7, KB-3-1, B16) and non-malignant fibroblasts hFF3 in vitro revealed a correlation between the length of the aliphatic moieties in LPAs and their toxic effects - LPAs with the shortest decyl substituent were found to exhibit the highest cytotoxicity.
View Article and Find Full Text PDFUpconverting nanoparticles have unique spectral and photophysical properties that make them suitable for development of theranostics for imaging and treating large and deep-seated tumors. Nanoparticles based on NaYF crystals doped with lanthanides Yb and Er were obtained by the high-temperature decomposition of trifluoroacetates in oleic acid and 1-octadecene. Such particles have pronounced hydrophobic properties.
View Article and Find Full Text PDFIn this study, we examined the in vivo toxicity of the liposomes F consisting of 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride, lipid-helper 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and folate lipoconjugate (-{2-[-2,3-di(tetradecyloxy)prop-1-yloxycarbonyl]aminoethyl}-'-[2-(pteroyl-L-glutam-5-yl)aminoethyl]octadecaethyleneglycol) and investigated the antitumor effect of combined antitumor therapy consisting of MDR1-targeted siMDR/F complexes and conventional polychemotherapy using tumor xenograft initiated in immunodeficient mice. Detailed analysis of acute and chronic toxicity of this liposomal formulation in healthy C57BL/6J mice demonstrated that formulation F and parent formulation L (without folate lipoconjugate) have no acute and chronic toxicity in mice. The study of the biodistribution of siMDR/F lipoplexes in SCID mice with xenograft tumors formed by tumor cells differing in the expression level of folate receptors showed that the accumulation in various types of tumors strongly depends on the abandons of folate receptors in tumor cells and effective accumulation occurs only in tumors formed by cells with the highest FR levels.
View Article and Find Full Text PDFPhoto-controlled or photo-regulated molecules, especially biologically active and operating in physiological conditions, are in steady demand. Herein, furocoumaric and furocoumarinic acids being ()-isomers relative to each other were obtained in two stages starting from psoralen: the alkaline solvolysis of psoralen led to furocoumaric acid, which was further → photoisomerized (365 nm) to furocoumarinic acid. The kinetics of → photoisomerization was monitored by HPLC and UV-vis spectrophotometry.
View Article and Find Full Text PDFThe design of modified oligonucleotides that combine in one molecule several therapeutically beneficial properties still poses a major challenge. Recently a new type of modified mesyl phosphoramidate (or µ-) oligonucleotide was described that demonstrates high affinity to RNA, exceptional nuclease resistance, efficient recruitment of RNase H, and potent inhibition of key carcinogenesis processes in vitro. Herein, using a xenograft mouse tumor model, it was demonstrated that microRNA miR-21-targeted µ-oligonucleotides administered in complex with folate-containing liposomes dramatically inhibit primary tumor growth via long-term down-regulation of miR-21 in tumors and increase in biosynthesis of miR-21-regulated tumor suppressor proteins.
View Article and Find Full Text PDFFolate receptors (FR) are cellular markers highly expressed in various cancer cells. Here, we report on the synthesis of a novel folate-containing lipoconjugate (FC) built of 1,2-di-O-ditetradecyl-rac-glycerol and folic acid connected via a PEG spacer, and the evaluation of the FC as a targeting component of liposomal formulations for nucleic acid (NA) delivery into FR expressing tumor cells. FR-targeting liposomes, based on polycationic lipid 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride (2X3), lipid helper dioleoylphosphatidylethanolamine (DOPE) and novel FC, formed small compact particles in solution with diameters of 60 ± 22 nm, and were not toxic to cells.
View Article and Find Full Text PDFThree novel polycationic gemini amphiphiles with different spacers were developed and evaluated in terms of their physiochemical properties and transfection efficiencies. Cationic liposomes formed by these amphiphiles and the helper lipid DOPE were able to successfully condense DNA, as shown by gel mobility shift and ethidium bromide intercalation assays. Transfection activity of the liposomes was superior to Lipofectamine 2000 and was dependent on spacer structure, hydrophobicity, and nucleic acid type (pDNA or siRNA).
View Article and Find Full Text PDFA novel redox-sensitive polycationic amphiphile (2S3) with disulphide linkers for nucleic acid delivery was developed. Cationic liposomes formed by 2S3 and the helper lipid DOPE demonstrated effective DNA delivery into HEK293 cells with a maximal transfection activity that is superior than both nonredox-sensitive cationic liposomes and Lipofectamine® 2000 at an N/P ratio of 6/1. Redox-sensitivity was tested by experiments with extracellular glutathione which shown the ability of disulphide linker degradation.
View Article and Find Full Text PDFHere we demonstrate the ability of mannosylated liposomes (ML) targeted to mannose receptors (MR) to perform the targeted delivery of model plasmid DNA encoding EGFP and total tumour RNA into murine bone-marrow-derived dendritic cells (DCs) and enhance the efficiency of anti-tumour response triggered by these DCs in murine melanoma model. ML consist of cationic lipid 2X3 (1,26-Bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride), helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), and 2.5, 5 or 10% mol.
View Article and Find Full Text PDFCationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions.
View Article and Find Full Text PDFHere we report on the application of cationic liposomes formed by new cationic lipids and the lipid-helper DOPE (dioleoylphosphatidylethanolamine) for the transfection of plasmid DNA and mRNA into dendritic cells (DCs) progenitors and immature DCs of bone-marrow origin in vitro and the use of these DCs to induce the suppression of B16 melanoma metastases in vivo. The cationic lipids contain one (X2, S1, S2 and S3) or two (2X3) cholesterol residues or long-chain hydrocarbon substituent (2D3) linked with spermine. Data show that liposomes 2X3-DOPE, 2D3-DOPE, X2-DOPE and S2-DOPE display high transfection efficiency in respect to DNA (30-47% of DC progenitors and up to 57% of immature DC were transfected) and RNA (up to 57% of cells were transfected).
View Article and Find Full Text PDFNew polycationic lipids corresponding to the two different classes of amphiphiles ("head-tail" and "gemini") were designed and used as components of non-viral gene delivery systems. The hydrophobic domain of lipids is based on the cholesterol residue and the hydrophilic one--on the naturally occurring polyamine--spermine. Ester and carbamate linker groups as well as oligomethylene spacers of various lengths were used to connect cholesterol and spermine motifs in order to estimate the structure-activity relationships of novel polycationic lipids and to determine an effective and safe transfectant suitable for the delivery of different nucleic acids.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2011
Two types of complexes were prepared from a cationic cholesterol derivative, dioleoylphos-phatidylcholine and DNA. Depending on the preparation procedure complexes were either dense snarls of lipid covered DNA (type A) or multilayer liposomes with DNA between layers (type B). The transfection efficiency of the snarl-shaped complexes was low but positive.
View Article and Find Full Text PDFCholesterol amphiphiles containing positively charged groups (pyridinium, N-methylimidazolium, N-methylmorpholinium, and N-methylpiperidinium) linked via β-glucosyl spacer were prepared by alkylation of the corresponding bases with 6-О-mesyl-β-D-cholesteryl glucopyranoside. IC(50) values were in the range 20-35μM for the series of compounds and liposomal formulations with DOPE (1:1) were significantly less toxic. The liposomal formulations provided the accumulation of FITC-labeled oligonucleotide in cells, and the efficiency of this process was comparable to that of Lipofectamine 2000.
View Article and Find Full Text PDFGene therapy based on gene delivery is a promising strategy for the treatment of human disease. Here we present data on structure/biological activity of new biodegradable cholesterol-based cationic lipids with various heterocyclic cationic head groups and linker types. Enhanced accumulation of nucleic acids in the cells mediated by the lipids was demonstrated by fluorescent microscopy and flow cytometry.
View Article and Find Full Text PDF