Publications by authors named "Mikhail A Kostylev"

Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrP) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid--maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrP and amyloid-β oligomers (Aβo). We show that PSCMA can induce reentrant LLPS of PrP and lower the saturation concentration () of PrP by 100-fold.

View Article and Find Full Text PDF

Oligomeric assemblies of amyloid-β (Aβ) peptide (Aβo) in the brains of individuals with Alzheimer's disease (AD) are toxic to neuronal synapses. More than a dozen Aβ receptor candidates have been suggested to be responsible for various aspects of the molecular pathology and memory impairment in mouse models of AD. A lack of consistent experimental design among previous studies of different receptor candidates limits evaluation of the relative roles of these candidates, producing some controversy within the field.

View Article and Find Full Text PDF

Cellular prion protein (PrP) binds the scrapie conformation of PrP (PrP) and oligomeric β-amyloid peptide (Aβo) to mediate transmissible spongiform encephalopathy (TSE) and Alzheimer's disease (AD), respectively. We conducted cellular and biochemical screens for compounds blocking PrP interaction with Aβo. A polymeric degradant of an antibiotic targets Aβo binding sites on PrP with low nanomolar affinity and prevents Aβo-induced pathophysiology.

View Article and Find Full Text PDF

Protein phase separation by low-complexity, intrinsically disordered domains generates membraneless organelles and links to neurodegeneration. Cellular prion protein (PrP) contains such domains, causes spongiform degeneration, and is a receptor for Alzheimer's amyloid-β oligomers (Aβo). Here, we show that PrP separates as a liquid phase, in which α-helical Thr become unfolded.

View Article and Find Full Text PDF

Progranulin (PGRN) is implicated in Alzheimer's disease (AD) as well as frontotemporal lobar degeneration. Genetic studies demonstrate an association of the common GRN rs5848 variant that results in reduced PGRN levels with increased risk for AD. However, the mechanisms by which PGRN reduction from the GRN AD risk variant or mutation exacerbates AD pathophysiology remain ill defined.

View Article and Find Full Text PDF

Synaptic loss is critical in Alzheimer's disease (AD), but the dynamics of synapse turnover are poorly defined. We imaged dendritic spines in transgenic APPswe/PSen1∆E9 (APP/PS1) cerebral cortex. Dendritic spine turnover is increased far from plaque in aged APP/PS1 mice, and in young APP/PS1 mice prior to plaque formation.

View Article and Find Full Text PDF

Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta.

View Article and Find Full Text PDF

Alzheimer disease (AD) is characterized by amyloid-β accumulation, with soluble oligomers (Aβo) being the most synaptotoxic. However, the multivalent and unstable nature of Aβo limits molecular characterization and hinders research reproducibility. Here, we characterized multiple Aβo forms throughout the life span of various AD mice and in post-mortem human brain.

View Article and Find Full Text PDF

Introduction: Recent studies have shown that several strains of transgenic Alzheimer's disease (AD) mice overexpressing the amyloid precursor protein (APP) have cortical hyperexcitability, and their results have suggested that this aberrant network activity may be a mechanism by which amyloid-β (Aβ) causes more widespread neuronal dysfunction. Specific anticonvulsant therapy reverses memory impairments in various transgenic mouse strains, but it is not known whether reduction of epileptiform activity might serve as a surrogate marker of drug efficacy for memory improvement in AD mouse models.

Methods: Transgenic AD mice (APP/PS1 and 3xTg-AD) were chronically implanted with dural electroencephalography electrodes, and epileptiform activity was correlated with spatial memory function and transgene-specific pathology.

View Article and Find Full Text PDF

Objective: Currently no effective disease-modifying agents exist for the treatment of Alzheimer disease (AD). The Fyn tyrosine kinase is implicated in AD pathology triggered by amyloid-ß oligomers (Aßo) and propagated by Tau. Thus, Fyn inhibition may prevent or delay disease progression.

View Article and Find Full Text PDF

Soluble Amyloid-β oligomers (Aβo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrP(C)). PrP(C) interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrP(C) to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrP(C) and mGluR5 in cell lines and mouse brain.

View Article and Find Full Text PDF

Amyloid-beta (Aβ) oligomers are thought to trigger Alzheimer's disease pathophysiology. Cellular prion protein (PrP(C)) selectively binds oligomeric Aβ and can mediate Alzheimer's disease-related phenotypes. We examined the specificity, distribution and signaling of Aβ-PrP(C) complexes, seeking to understand how they might alter the function of NMDA receptors (NMDARs) in neurons.

View Article and Find Full Text PDF