Transcriptomic analysis conducted by us previously revealed upregulation of genes involved in low-density lipoprotein particle receptor (LDLR) activity pathway in lethal COVID-19 caused by SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2). Last data suggested the possible role of extracellular vesicles in COVID-19 pathogenesis. The aim of the present study was to retrospectively evaluate parameters of cholesterol metabolism and newly identified EVs, exomeres, as possible predictors of fatal outcome of COVID-19 patients infected by the Alpha and the Delta variants of SARS-CoV-2 virus.
View Article and Find Full Text PDFTo assess the biology of the lethal endpoint in patients with SARS-CoV-2 infection, we compared the transcriptional response to the virus in patients who survived or died during severe COVID-19. We applied gene expression profiling to generate transcriptional signatures for peripheral blood mononuclear cells (PBMCs) from patients with SARS-CoV-2 infection at the time when they were placed in the Intensive Care Unit of the Pavlov First State Medical University of St. Petersburg (Russia).
View Article and Find Full Text PDFIntroduction: Glucocerebrosidase 1 mutations, the most common genetic contributor to Parkinson's disease (PD), have been associated with decreased glucocerebrosidase enzymatic activity in PD patients with glucocerebrosidase 1 mutations (glucocerebrosidase 1-PD). However, it is unknown whether this decrease in enzymatic activity leads to lysosphingolipid accumulations.
Methods: The levels of hexosylsphingosines, globotriaosylsphingosine, sphingomyelin, and sphingomyelin-509 were measured in dried blood spots from glucocerebrosidase 1-PD patients (n = 23), sporadic PD patients (n = 105), Gaucher disease patients (n = 32), and controls (n = 88) by liquid chromatography-tandem mass spectrometry.