Publications by authors named "Mikhaĭlopulo I"

Article Synopsis
  • Enzymatic transglycosylation of a specific fleximer base using recombinant purine nucleoside phosphorylase (PNP) resulted in the production of both expected and unexpected reaction products, including N1-pyrazole nucleosides and novel derivatives.
  • The study revealed that certain minor products, like a 4-imino-pyridinium riboside and bis-ribose derivatives, were formed, while a particular expected product (4-imino-pyridinium deoxyriboside) was absent.
  • Molecular modeling helped identify how the structure of the heterocyclic substrates interacts with the PNP active site, suggesting that the spatial arrangement may facilitate secondary glycosylation, leading to
View Article and Find Full Text PDF

During the preparative synthesis of 2-fluorocordycepin from 2-fluoroadenosine and 3'-deoxyinosine catalyzed by purine nucleoside phosphorylase, a slowdown of the reaction and decrease of yield down to 5% were encountered. An unknown nucleoside was found in the reaction mixture and its structure was established. This nucleoside is formed from the admixture of 2',3'-anhydroinosine, a byproduct in the preparation of 3-'deoxyinosine.

View Article and Find Full Text PDF

In the present work, we suggested anion exchange resins in the phosphate form as a source of phosphate, one of the substrates of the phosphorolysis of uridine, thymidine, and 1-(β-ᴅ-arabinofuranosyl)uracil (Ara-U) catalyzed by recombinant uridine (UP) and thymidine (TP) phosphorylases. α-ᴅ-Pentofuranose-1-phosphates (PF-1Pis) obtained by phosphorolysis were used in the enzymatic synthesis of nucleosides. It was found that phosphorolysis of uridine, thymidine, and Ara-U in the presence of Dowex 1X8 (phosphate; Dowex-Pi) proceeded smoothly in the presence of magnesium cations in water at 20-50 °C for 54-96 h giving rise to quantitative formation of the corresponding pyrimidine bases and PF-1Pis.

View Article and Find Full Text PDF

The -2-deoxyribosylation of 4-thiouracil (Ura) and 2-thiouracil (Ura), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either thymidine (TP) or uridine (UP) phosphorylases. Ura revealed satisfactory substrate activity for UP and, unexpectedly, complete inertness for TP; no formation of 2'-deoxy-2-thiouridine (Ud) was observed under analogous reaction conditions in the presence of UP and TP. On the contrary, U, Ud, Td and Td are good substrates for both UP and TP; moreover, U, Td and 2'-deoxy-5-azacytidine (Decitabine) are substrates for PNP and the phosphorolysis of the latter is reversible.

View Article and Find Full Text PDF

A wide range of natural purine analogues was used as probe to assess the mechanism of recognition by the wild-type (WT) E. coli purine nucleoside phosphorylase (PNP) versus its Ser90Ala mutant. The results were analyzed from viewpoint of the role of the Ser90 residue and the structural features of the bases.

View Article and Find Full Text PDF

Two approaches to the synthesis of 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)adenine (1, clofarabine) were studied. The first approach consists in the chemical synthesis of 2-deoxy-2-fluoro-α-D-arabinofuranose-1-phosphate (12a, (2F)Ara-1P) via three step conversion of 1,3,5-tri-O-benzoyl-2-deoxy-2-fluoro-α-D-arabinofuranose (9) into the phosphate 12a without isolation of intermediary products. Condensation of 12a with 2-chloroadenine catalyzed by the recombinant E.

View Article and Find Full Text PDF

Thermostable nucleoside phosphorylases are attractive biocatalysts for the synthesis of modified nucleosides. Hence we report on the recombinant expression of three 'high molecular mass' purine nucleoside phosphorylases (PNPs) derived from the thermophilic bacteria Deinococcus geothermalis, Geobacillus thermoglucosidasius and from the hyperthermophilic archaeon Aeropyrum pernix (5'-methythioadenosine phosphorylase; ApMTAP). Thermostability studies, kinetic analysis and substrate specificities are reported.

View Article and Find Full Text PDF

This review focuses on new trends in nucleoside biotechnology, which have emerged during the last decade. Continuously growing interest in the study of this class of compounds is fueled by a number of factors: ( i ) a growing need for large-scale production of natural 2 ' -deoxy- β -D-ribonucleosides as well as their analogs with modifications in the carbohydrate and base fragments, which can then be used for the synthesis and study of oligonucleotides, including short-interfering RNA (siRNA), microRNA (miRNA), etc.; ( ii ) a necessity for the development of efficient practical technologies for the production of biologically important analogs of natural nucleosides, including a number of anticancer and antiviral drugs; ( iii ) a need for further study of known and novel enzymatic transformations and their use as tools for the efficient synthesis of new nucloside analogs and derivates with biomedical potential.

View Article and Find Full Text PDF

9-(2',3'-Dideoxy-2',3'-difluoro-beta-D-arabinofuranosyl)adenine (20), 2-chloro-9-(2',3'-dideoxy-2,3-difluoro-beta-D-arabinofuranosyl)adenine (22), as well as their respective alpha-anomers 21 and 23, were synthesized by the nucleobase anion glycosylation of intermediate 5-O-benzoyl-2,3-dideoxy-2,3-difluoro-alpha-D-arabinofuranosyl bromide (13) starting from methyl 5-O-benzyl-3-deoxy-3-fluoro-alpha-D-ribofuranoside (3) and methyl 5-O-benzoyl-alpha-D-xylofuranoside (10). These compounds were evaluated as potential inhibitors of HIV-1 and hepatitis C virus in human PBM and Huh-7 Replicon cells, respectively. The adenosine analog 20 demonstrated potent activity against HIV-1 in primary human lymphocytes with no apparent cytotoxicity.

View Article and Find Full Text PDF

The conformations of three 2',3'-difluoro uridine nucleosides were studied by X-ray crystallography, NMR spectroscopy, and ab initio calculations in an attempt to define the roles that the two vicinal fluorine atoms play in the puckering preferences of the furanose ring. Two of the compounds examined contained fluorine atoms in either the arabino or xylo dispositions at C2' and C3' of a 2',3'-dideoxyuridine system. The third compound also incorporated fluorine atoms in the xylo configuration on the furanose ring but was substituted with a 6-azauracil base in place of uracil.

View Article and Find Full Text PDF

Convergent synthesis of 9-(2,3-dideoxy-2,3-difluoro-beta-D-arabinofuranosyl)adenine is described starting from methyl 5-O-benzyl-2-deoxy-2-fluoro-alpha-D-arabinofuranoside.

View Article and Find Full Text PDF

The crystal structures of the title compounds 1 and 2 have been determined. Relation between the stereochemistry of both nucleosides in the crystal state and the (1)H NMR data in solution as well as the ab initio calculations is discussed.

View Article and Find Full Text PDF

An enzymatic transglycosylation of purine heterocyclic bases employing readily available natural nucleosides or sugar-modified nucleosides as donors of the pentofuranose fragment and recombinant nucleoside phosphorylases as biocatalysts has been investigated. An efficient enzymatic method is suggested for the synthesis of purine nucleosides containing diverse substituents at the C6 and C2 carbon atoms. The glycosylation of N(6)-benzoyladenine and N(2)-acetylguanine and its O(6)-derivatives is not accompanied by deacylation of bases.

View Article and Find Full Text PDF

Enzymatic 5'-monophosphorylation and 5'-phosphatidylation of a number of beta-L- and beta-D-nucleosides was investigated. The first reaction, catalyzed by nucleoside phosphotransferase (NPT) from Erwinia herbicola, consisted of the transfer of the phosphate residue from p-nitrophenylphosphate (p-NPP) to the 5'-hydroxyl group of nucleoside; the second was the phospholipase D (PLD)-catalyzed transphosphatidylation of L-alpha-lecithin with a series of beta-L- and beta-D-nucleosides as the phosphatidyl acceptor resulted in the formation of the respective phospholipid-nucleoside conjugates. Some beta-L-nucleosides displayed similar or even higher substrate activity compared to the beta-D-enantiomers.

View Article and Find Full Text PDF

In the structure of the title compound, C11H13N5O4, the glycosidic torsion angle, chi, is -107.1 (2) degrees [nucleic acid nomenclature used throughout the manuscript; IUPAC-IUB Joint Commision on Biochemical Nomenclature (1983). Eur.

View Article and Find Full Text PDF

Ribokinase (RK) was expressed in the Escherichia coli ER2566 cells harboring the constructed expression plasmid encompassing the rbsK gene, encoding ribokinase. The recombinant enzyme was purified from sonicated cells by double chromatography to afford a preparation that was ca. 90% pure and had specific activity of 75 micromol/min mg protein.

View Article and Find Full Text PDF

The 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl ortho-aza-purine and -pyrimidine nucleosides manifest an unusually rigid sugar N conformation in solution.

View Article and Find Full Text PDF

An improved method to transform nucleosides into 5'-monophosphates using nucleoside phosphotransferase from Erwinia herbicola is reported. The method is based on the shift in the equilibrium state of the reaction to the formation of desired product due to its precipitation by Zn2+. Under optimal conditions, the extent of nucleoside transformations into nucleoside-5'-monophosphates were 41-91% (mol).

View Article and Find Full Text PDF

Sequence-specific 3-deazaadenosine (c(3)A)-substituted analogues of trimeric 2',5'-oligoadenylate, p5'A2'p5'A2'p5'A, were synthesized and evaluated for their ability to activate human RNase L (EC 3.1.2.

View Article and Find Full Text PDF

Six non-conventional adenosine-2'- and 3'-triphosphate analogues of ATP were tested as potential phosphate donors for all four human, and D. melanogaster, deoxyribonucleoside kinases. With dCK (only dAdo as acceptor), TK1, TK2 and dNK only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP).

View Article and Find Full Text PDF

9-(3-Deoxy-beta-D-erythro-pentofuranosyl)-2,6-diaminopurine (2) was synthesized by an enzymatic transglycosylation of 2,6-diaminopurine using 3'-deoxycytidine (1) as a donor of the sugar moiety. Nucleoside 2 was transformed to 3'-deoxy guanosine (3), 9-(3-deoxy-beta-D-erythro-pentofuranosyl)-2-amino-6-oxopurine (3'-deoxyisoguanosine; 4), and 9-(3-deoxy-beta-D-erythro-pentofuranosyl)-2-fluoroadenine (5). Compounds 2-5 were evaluated for their anti-HIV activity.

View Article and Find Full Text PDF

The synthesis of methyl 5-O-benzoyl-2-chloro-2,3-dideoxy-3-fluoro-beta-d-ribofuranoside (5) and its use as a glycosylating agent for persilylated thymine, N(6)-benzoyladenine, and N(4)-benzoylcytosine are described (Scheme 1). The 2'-chloro-2',3'-dideoxy-3'-fluoro-d-ribonucleosides 10-12 synthesized were transformed to 2',3'-dideoxy-3'-fluoro-alpha- and -beta-d-erythro-pentofuranoside nucleosides of thymine (13a,b), adenine (14a,b), and cytidine (15a,b) by treatment with tributyltin hydride in the presence of alpha,alpha'-azobisisobutyronitrile (Scheme 2). Treatment of 2'-chloro-2',3'-dideoxy-3'-fluoro-d-ribonucleosides with 1 M MeONa/MeOH under reflux for 1-5 h afforded 2',3'-didehydro-2',3'-dideoxy-2'-chloro-d-pentofuranosyl nucleosides as the principal products (47-81%) of the reaction, along with recovered starting nucleoside (11-33%) (Scheme 3).

View Article and Find Full Text PDF

The nucleobase anion glycosylation of 3-bromo-4-isopropoxy-1H-pyrazolo[3,4-d]pyrimidin-6-amine (6) with 3,5-di-O-benzoyl-2-deoxy-2-fluoro-alpha-d-arabinofuranosyl bromide (5) furnished the protected N(1)-beta-d-nucleosides 7 (60%) and 8 (ca. 2%) along with the N(2)-beta-d-regioisomer 9 (9%). Debenzoylation of compounds 7 and 9 yielded the nucleosides 10 (81%) and 11 (76%).

View Article and Find Full Text PDF

In extension of an earlier report, six non-conventional analogues of ATP, three adenosine-2'-triphosphates (3'-deoxy, 3'-deoxy-3'-fluoro- and 3'-deoxy-3'-fluoroxylo-), and three adenosine-3'-triphosphates (2'-deoxy-, 2'-deoxy-2'-fluoro- and 2'-deoxy-2'-fluoroara-), were compared with ATP as potential phosphate donors for human deoxycytidine kinase (dCK), cytosolic thymidine kinase (TK1), mitochondrial TK2, deoxyguanosine kinase (dGK), and the deoxyribonucleoside kinase (dNK) from Drosophila melanogaster. With one group of enzymes, comprising TK1, TK2, dNK and dCK (with dAdo as acceptor), only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP), and the other five analogues much less so, or inactive. With a second set, including dCK (dCyd, but not dAdo, as acceptor) and dGK (dGuo as acceptor), known to share high sequence similarity (approximately 45% sequence identity), all six analogues were good to excellent donors (13-119% that for ATP).

View Article and Find Full Text PDF

High antiviral activity of 2'-deoxy-2'fluoroguanosine (2'-D-2'-FG) was observed in chicken embryo cells infected with FPV/Rostock/34 (H7N1) influenza virus and herpes simplex virus (HSV) type I (strain 1C). 50% inhibitory concentration (IC50) of 2'-D-2'-FG was 1.44 microM for FPV and 0.

View Article and Find Full Text PDF