Phys Rev Lett
September 2024
We propose a quantum lidar protocol to jointly estimate the range and velocity of a target by illuminating it with a single beam of pulsed displaced squeezed light. In the lossless scenario, we show that the mean-squared errors of both range and velocity estimations are inversely proportional to the squared number of signal photons, simultaneously attaining the Heisenberg limit. This is achieved by engineering the multiphoton squeezed state of the temporal modes and adopting standard homodyne detection.
View Article and Find Full Text PDFHere, we present a detailed description of the in situ isothermal crystallization of poly(trimethylene 2,5-furandicarboxylate)(PTF) as revealed by real-time Fourier transform infrared spectroscopy (FTIR) and grazing incidence wide-angle X-ray scattering (GIWAXS). From FTIR experiments, the evolution of hydrogen bonding with crystallization time can be monitored in real time, while from GIWAXS, crystal formation can be followed. Density functional theory (DFT) calculations have been used to simulate FTIR spectra for different theoretical structures, enabling a precise band assignment.
View Article and Find Full Text PDFThe prediction of financial crashes in a complex financial network is known to be an NP-hard problem, which means that no known algorithm can efficiently find optimal solutions. We experimentally explore a novel approach to this problem by using a D-Wave quantum annealer, benchmarking its performance for attaining a financial equilibrium. To be specific, the equilibrium condition of a nonlinear financial model is embedded into a higher-order unconstrained binary optimization (HUBO) problem, which is then transformed into a spin-1/2 Hamiltonian with at most, two-qubit interactions.
View Article and Find Full Text PDFActive learning is a machine learning method aiming at optimal design for model training. At variance with supervised learning, which labels all samples, active learning provides an improved model by labeling samples with maximal uncertainty according to the estimation model. Here, we propose the use of active learning for efficient quantum information retrieval, which is a crucial task in the design of quantum experiments.
View Article and Find Full Text PDFThe aqueous-phase and surface reactions of ozone (O) with iodide (I) in/on seawater have been recently found to be a strong atmospheric source of iodine. In addition, ozone also reacts with I in solid and aqueous sea-salt aerosol. However, the primary products of the heterogeneous reactions of ozone with I have not been clarified.
View Article and Find Full Text PDFA quantum memristor is a passive resistive circuit element with memory, engineered in a given quantum platform. It can be represented by a quantum system coupled to a dissipative environment, in which a system-bath coupling is mediated through a weak measurement scheme and classical feedback on the system. In quantum photonics, such a device can be designed from a beam splitter with tunable reflectivity, which is modified depending on the results of measurements in one of the outgoing beams.
View Article and Find Full Text PDFMemristors, resistors with memory whose outputs depend on the history of their inputs, have been used with success in neuromorphic architectures, particularly as synapses and non-volatile memories. However, to the best of our knowledge, no model for a network in which both the synapses and the neurons are implemented using memristors has been proposed so far. In the present work we introduce models for single and multilayer perceptrons based exclusively on memristors.
View Article and Find Full Text PDFThe evolution of the magnetic anisotropy directions has been studied in a magnetite (FeO) thin film grown by infrared pulsed-laser deposition on SrTiO(100):Nb substrate. The magnetic easy axes at room temperature are found along the in-plane 〈100〉 film directions, which means a rotation of the easy axis by 45° with respect to the directions typically reported for bulk magnetite and films grown on single-crystal substrates. Moreover, when undergoing the Verwey transition temperature, T, the easy axis orientation evolves to the 〈110〉 film directions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2019
The documentation and monitoring of cleaning operations on paintings benefit from the identification and determination of thickness of the materials to be selectively removed. Since in artworks diagnosis the preservation of the object's integrity is a priority, the application of non-invasive techniques is commonly preferred. In this work, we present the results obtained with a set of non-invasive optical techniques for the chemical and physical characterization of six copper-phthalocyanine (Cu-Pc) acrylic paints.
View Article and Find Full Text PDFWe propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit.
View Article and Find Full Text PDFAtmospheric iodine chemistry plays a key role in tropospheric ozone catalytic destruction, new particle formation, and as one of the possible sinks of gaseous polar elemental mercury. Moreover, it has been recently proposed that reaction of ozone with iodide on the sea surface could be the major contributor to the chemical loss of atmospheric ozone. However, the mechanism of the reaction between aqueous iodide and ozone is not well known.
View Article and Find Full Text PDFWe develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms.
View Article and Find Full Text PDFWe report on the fabrication of gold coated nanostructured polymer thin films and on their characterization as substrates for surface enhanced Raman spectroscopy (SERS). Laser induced periodic surface structures (LIPSS) were obtained on thin polymer films of poly(trimethylene terephthalate) (PTT) upon laser irradiation with the fourth harmonic of a Nd:YAG laser (266 nm, pulse duration 6 ns) resulting in a period close to the incident wavelength. The nanostructured polymer substrates were coated with a nanoparticle assembled gold layer by pulsed laser deposition using the fifth harmonic of a Nd:YAG laser (213 nm, pulse duration 15 ns).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2005
In this work, we report on studies of the nature of the dynamics and hydrophobic binding in cyclodextrins and human serum albumin protein complexes with orange II. With femtosecond time resolution, we examined the proton-transfer and trans-cis isomerization reactions of the ligand in these nanocavities and in pure solvents. Because of confinement at the ground state, the orientational motion in the formed phototautomer is restricted, leading to a rich dynamics.
View Article and Find Full Text PDF