J Speech Lang Hear Res
November 2024
Purpose: The purpose of this study was to investigate cortical tracking of speech (CTS) in adults who stutter (AWS) compared to typically fluent adults (TFAs) to test the involvement of the speech-motor network in tracking rhythmic speech information.
Method: Participants' electroencephalogram was recorded while they simply listened to sentences (listening only) or completed them by naming a picture (listening for speaking), thus manipulating the upcoming involvement of speech production. We analyzed speech-brain coherence and brain connectivity during listening.
Perceptual systems heavily rely on prior knowledge and predictions to make sense of the environment. Predictions can originate from multiple sources of information, including contextual short-term priors, based on isolated temporal situations, and context-independent long-term priors, arising from extended exposure to statistical regularities. While the effects of short-term predictions on auditory perception have been well-documented, how long-term predictions shape early auditory processing is poorly understood.
View Article and Find Full Text PDFCortical tracking of speech is relevant for the development of speech perception skills. However, no study to date has explored whether and how cortical tracking of speech is shaped by accumulated language experience, the central question of this study. In 35 bilingual children (6-year-old) with considerably bigger experience in one language, we collected electroencephalography data while they listened to continuous speech in their two languages.
View Article and Find Full Text PDFThe synchronization between the speech envelope and neural activity in auditory regions, referred to as cortical tracking of speech (CTS), plays a key role in speech processing. The method selected for extracting the envelope is a crucial step in CTS measurement, and the absence of a consensus on best practices among the various methods can influence analysis outcomes and interpretation. Here, we systematically compare five standard envelope extraction methods the absolute value of Hilbert transform (absHilbert), gammatone filterbanks, heuristic approach, Bark scale, and vocalic energy), analyzing their impact on the CTS.
View Article and Find Full Text PDFCortical tracking of speech is vital for speech segmentation and is linked to speech intelligibility. However, there is no clear consensus as to whether reduced intelligibility leads to a decrease or an increase in cortical speech tracking, warranting further investigation of the factors influencing this relationship. One such factor is listening effort, defined as the cognitive resources necessary for speech comprehension, and reported to have a strong negative correlation with speech intelligibility.
View Article and Find Full Text PDFPhonological difficulties have been identified as a core deficit in developmental dyslexia, yet everyday speech comprehension, which relies on phonological processing, is seemingly unaffected. This raises the question as to how dyslexic readers process spoken words to achieve normal word comprehension. Here we establish a link between neural correlates of lexical and sublexical processing in auditory words and behaviourally measured phonological deficits using magnetoencephalography (MEG).
View Article and Find Full Text PDFThe coordination between the theta phase (3-7 Hz) and gamma power (25-35 Hz) oscillations (namely theta-gamma phase-amplitude coupling, PAC) in the auditory cortex has been proposed as an essential neural mechanism involved in speech processing. However, it has not been established how this mechanism is related to the efficiency with which a listener processes speech. Speech processing in a non-native language offers a useful opportunity to evaluate if theta-gamma PAC is modulated by the challenges imposed by the reception of speech input in a non-native language.
View Article and Find Full Text PDFContextual information triggers predictions about the content ("what") of environmental stimuli to update an internal generative model of the surrounding world. However, visual information dynamically changes across time, and temporal predictability ("when") may influence the impact of internal predictions on visual processing. In this magnetoencephalography (MEG) study, we investigated how processing feature specific information ("what") is affected by temporal predictability ("when").
View Article and Find Full Text PDFThe ability to establish associations between visual objects and speech sounds is essential for human reading. Understanding the neural adjustments required for acquisition of these arbitrary audiovisual associations can shed light on fundamental reading mechanisms and help reveal how literacy builds on pre-existing brain circuits. To address these questions, the present longitudinal and cross-sectional MEG studies characterize the temporal and spatial neural correlates of audiovisual syllable congruency in children (age range, 4-9 years; 22 males and 20 females) learning to read.
View Article and Find Full Text PDFCortical tracking of linguistic structures in speech, such as phrases (<3 Hz, delta band) and syllables (3-8 Hz, theta band), is known to be crucial for speech comprehension. However, it has not been established whether this effect is related to language proficiency. Here, we investigate how auditory cortical activity in second language (L2) learners tracked L2 speech.
View Article and Find Full Text PDFSemantic prediction and cortical entrainment to the acoustic landmarks of the speech envelope are two fundamental yet qualitatively different mechanisms that facilitate speech comprehension. However, it is not clear how and to what extent those mechanisms interact with each other. On the one hand, richer semantic context could enhance the perceptual representation of a predictable stimulus, thus improving speech entrainment.
View Article and Find Full Text PDFWhether phonological deficits in developmental dyslexia are associated with impaired neural sampling of auditory information is still under debate. Previous findings suggested that dyslexic participants showed atypical neural entrainment to slow and/or fast temporal modulations in speech, which might affect prosodic/syllabic and phonemic processing respectively. However, the large methodological variations across these studies do not allow us to draw clear conclusions on the nature of the entrainment deficit in dyslexia.
View Article and Find Full Text PDFSpeech comprehension has been proposed to critically rely on oscillatory cortical tracking, that is, phase alignment of neural oscillations to the slow temporal modulations (envelope) of speech. Speech-brain entrainment is readjusted over time as transient events (edges) in speech lead to speech-brain phase realignment. Auditory behavioral research suggests that phonological deficits in dyslexia are linked to difficulty in discriminating speech edges.
View Article and Find Full Text PDFHow the human brain uses self-generated auditory information during speech production is rather unsettled. Current theories of language production consider a feedback monitoring system that monitors the auditory consequences of speech output and an internal monitoring system, which makes predictions about the auditory consequences of speech before its production. To gain novel insights into underlying neural processes, we investigated the coupling between neuromagnetic activity and the temporal envelope of the heard speech sounds (i.
View Article and Find Full Text PDFPostoperative functional neuroimaging provides a unique opportunity to investigate the neural mechanisms that facilitate language network reorganization. Previous studies in patients with low grade gliomas (LGGs) in language areas suggest that postoperative recovery is likely due to functional neuroplasticity in peritumoral and contra-tumoral healthy regions, but have attributed varying degrees of importance to specific regions. In this study, we used Magnetoencephalography (MEG) to investigate functional connectivity changes in peritumoral and contra-tumoral regions after brain tumor resection.
View Article and Find Full Text PDFAnn N Y Acad Sci
October 2019
Low- and high-frequency cortical oscillations play an important role in speech processing. Low-frequency neural oscillations in the delta (<4 Hz) and theta (4-8 Hz) bands entrain to the prosodic and syllabic rates of speech, respectively. Theta band neural oscillations modulate high-frequency neural oscillations in the gamma band (28-40 Hz), which have been hypothesized to be crucial for processing phonemes in natural speech.
View Article and Find Full Text PDFEur J Neurosci
October 2018
Cortical oscillations phase-align to the quasi-rhythmic structure of the speech envelope. This speech-brain entrainment has been reported in two frequency bands, that is both in the theta band (4-8 Hz) and in the delta band (<4 Hz). However, it is not clear if these two phenomena reflect passive synchronization of the auditory cortex to the acoustics of the speech input, or if they reflect higher processes involved in actively parsing speech information.
View Article and Find Full Text PDFThis study examined the putative link between the entrainment to the slow rhythmic structure of speech, speech intelligibility and reading by means of a behavioral paradigm. Two groups of 20 children (Grades 2 and 5) were asked to recall a pseudoword embedded in sentences presented either in quiet or noisy listening conditions. Half of the sentences were primed with their syllabic and prosodic amplitude envelope to determine whether a boost in auditory entrainment to these speech features enhanced pseudoword intelligibility.
View Article and Find Full Text PDFStudies on adults suggest that reading-induced brain changes might not be limited to linguistic processes. It is still unclear whether these results can be generalized to reading development. The present study shows to which extent neural responses to verbal and nonverbal stimuli are reorganized while children learn to read.
View Article and Find Full Text PDFDevelopmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher-order phonological regions (i.e.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
In this study, we compared the brain activation profiles obtained from resting state Magnetoencephalographic (MEG) activity in 15 dyslexic patients with the profiles of 15 normal controls, using power spectral density (PSD) analysis. We first estimated intracranial dipolar MEG sources on a dense grid on the cortical surface and then projected these sources on a standardized atlas with 68 regions of interest (ROIs). Averaging the PSD values of all sources in each ROI across all control subjects resulted in a normative database that was used to convert the PSD values of dyslexic patients into z-scores in eight distinct frequency bands.
View Article and Find Full Text PDFWhether phonological deficits in developmental dyslexia are associated with impaired neural sampling of auditory information at either syllabic- or phonemic-rates is still under debate. In addition, whereas neuroanatomical alterations in auditory regions have been documented in dyslexic readers, whether and how these structural anomalies are linked to auditory sampling and reading deficits remains poorly understood. In this study, we measured auditory neural synchronization at different frequencies corresponding to relevant phonological spectral components of speech in children and adults with and without dyslexia, using magnetoencephalography.
View Article and Find Full Text PDFLiteracy and numeracy are two fundamental cognitive skills that require mastering culturally-invented symbolic systems for representing spoken language and quantities. How numbers and words are processed in the human brain and their temporal dynamics remain unclear. Using MEG (magnetoencephalography), we find brain activation differences for literacy and numeracy from early stages of processing in the temporal-occipital and temporal-parietal regions.
View Article and Find Full Text PDF