Plant breeding relies on the meiotic recombination or crossing over to generate the new combinations of the alleles along and among the chromosomes. However, crossing over is constrained in the crops such as barley by a combination of the low frequency and biased distribution. In this study, we attempted to identify the genes that limit the recombination by performing a suppressor screen for the restoration of fertility to the semi-fertile barley mutant (), carrying a mutation in the barley ortholog of (), a member of the MutL-homolog (MLH) family of DNA mismatch repair genes.
View Article and Find Full Text PDFProgrammed meiotic DNA double-strand breaks (DSBs), necessary for proper chromosomal segregation and viable gamete formation, are repaired by homologous recombination (HR) as crossovers (COs) or non-crossovers (NCOs). The mechanisms regulating the number and distribution of COs are still poorly understood. The regulator of telomere elongation helicase 1 (RTEL1) DNA helicase was previously shown to enforce the number of meiotic COs in but its function in plants has been studied only in the vegetative phase.
View Article and Find Full Text PDFIn flowering plants, successful germinal cell development and meiotic recombination depend upon a combination of environmental and genetic factors. To gain insights into this specialized reproductive development program we used short- and long-read RNA-sequencing (RNA-seq) to study the temporal dynamics of transcript abundance in immuno-cytologically staged barley () anthers and meiocytes. We show that the most significant transcriptional changes in anthers occur at the transition from pre-meiosis to leptotene-zygotene, which is followed by increasingly stable transcript abundance throughout prophase I into metaphase I-tetrad.
View Article and Find Full Text PDFMeiotic recombination plays a crucial role in plant breeding through the creation of new allelic combinations. Therefore, lack of recombination in some genomic regions constitutes a constraint for breeding programmes. In sugar beet, one of the major crops in Europe, recombination occurs mainly in the distal portions of the chromosomes, and so the development of simple approaches to change this pattern is of considerable interest for future breeding and genetics.
View Article and Find Full Text PDFDetermining when a barley plant starts and finishes meiosis is not trivial as when the spikelets undergo meiosis, the spike is not visible as it is still well within the leaf sheath on the developing tiller. This is a general constraint for any experiment involving meiosis, such as cytology, RNA extractions, or abiotic stress treatments aiming to target such a developmental stage. The lack of synchronicity between barley tillers within the same plant exacerbates the difficulty to determine the overall meiotic stage of a plant at a certain time.
View Article and Find Full Text PDFWheat and barley have large genomes of 15 Gb and 5.1 Gb, respectively, which is much larger than the human genome (3.3 Gb).
View Article and Find Full Text PDFRecombination (crossover) drives the release of genetic diversity in plant breeding programs. However, in barley, recombination is skewed toward the telomeric ends of its seven chromosomes, restricting the re-assortment of about 30% of the genes located in the centromeric regions of its large 5.1 Gb genome.
View Article and Find Full Text PDFThe production of balanced fertile haploid gametes requires the faithful separation of paired (synapsed) chromosomes toward the end of meiotic prophase I (desynapsis). This involves the timely dissolution of the synaptonemal complex during the pachytene-diplotene transition, a stage traditionally referred to as the "diffuse stage." In species with large genomes such as, barley ( L.
View Article and Find Full Text PDF