Detecting areas with high social-ecological vulnerability (SEV) is essential to better inform management interventions for building resilience in coastal systems. The SEV framework, developed by the Intergovernmental Panel on Climate Change, is a robust method to identify SEV of tropical coastal systems to climate change. Yet, the application of this framework to temperate regions and other drivers of change remains underexplored.
View Article and Find Full Text PDFMarine protected areas (MPAs) provide multiple conservation benefits, thus raising the question of how good and consistent they are at their roles. Here, we quantified three components, namely, diversity, biomass, and other relevant variables, in numerous protected and unprotected areas across four marine ecoregions in south-western Europe. We created a "global conservation status index" (CSI) as the sum of CSI, CSI, and CSI.
View Article and Find Full Text PDFOcean sprawl is replacing natural substrates with artificial alternatives. We hypothesized that, after submersion, high occupancy, high mobility species colonize artificial substrates faster than low occupancy, low mobility species, a biodiversity divergence that will slowly fade out with time. Using quantitative visual census of species in 10 artificial and their adjacent natural substrates, we tested for the existence and temporal evolution of this divergence.
View Article and Find Full Text PDFReporting progress against targets for international biodiversity agreements is hindered by a shortage of suitable biodiversity data. We describe a cost-effective system involving Reef Life Survey citizen scientists in the systematic collection of quantitative data covering multiple phyla that can underpin numerous marine biodiversity indicators at high spatial and temporal resolution. We then summarize the findings of a continental- and decadal-scale State of the Environment assessment for rocky and coral reefs based on indicators of ecosystem state relating to fishing, ocean warming, and invasive species and describing the distribution of threatened species.
View Article and Find Full Text PDFLack of knowledge of the marine realm may bias our perception of the current status and threats to marine biodiversity. Less than 10% of all ecological literature is related to the ocean, and the information we have on marine species that are threatened or on the verge of extinction is scarce. This lack of information is particularly critical for isolated areas such as oceanic archipelagos.
View Article and Find Full Text PDFSponges are important components of marine benthic communities. High microbial abundance sponges host a large diversity of associated microbial assemblages. However, the dynamics of such assemblages are still poorly known.
View Article and Find Full Text PDFIn line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100 km(2)), and isolated by deep water or sand.
View Article and Find Full Text PDFSpecies richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling).
View Article and Find Full Text PDFTemporal changes in the production of secondary metabolites are far from being fully understood. Our study quantified, over a two-year period, the concentrations of brominated alkaloids in the ectosome and the choanosome of Aplysina aerophoba, and examined the temporal patterns of these natural products. Based on standard curves, we quantified the concentrations of aerophobin-2, aplysinamisin-1, and isofistularin-3: three of the four major peaks obtained through chemical profiling with high-performance liquid chromatography.
View Article and Find Full Text PDFUnderstanding the scale at which natural products vary the most is critical because it sheds light on the type of factors that regulate their production. The sponge Aplysina aerophoba is a common Mediterranean sponge inhabiting shallow waters in the Mediterranean and its area of influence in Atlantic Ocean. This species contains large concentrations of brominated alkaloids (BAs) that play a number of ecological roles in nature.
View Article and Find Full Text PDFThe intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella.
View Article and Find Full Text PDFThe sponge Aplysina aerophoba produces a large diversity of brominated alkaloids (BAs) and hosts a complex microbial assemblage. Although BAs are located within sponge cells, the enzymes that bind halogen elements to organic compounds have been exclusively described in algae, fungi, and bacteria. Bacterial communities within A.
View Article and Find Full Text PDFExtracts of the Floridian marine cyanobacterium Lyngbya cf. confervoides were found to deter feeding by reef fish and sea urchins (Diadema antillarum). This antifeedant activity may be a reflection of the secondary metabolite content, known to be comprised of many serine protease inhibitors.
View Article and Find Full Text PDFPlant-herbivore interactions have strong ecological and evolutionary consequences, but have been traditionally overlooked in marine higher plants. Despite recent advances in seagrass ecology that highlight the importance of herbivory, the mechanisms that regulate the feeding behaviour of seagrass consumers remain largely unknown. Herbivores have been shown to reduce the sexual reproductive success of seagrasses through direct consumption of inflorescences and seeds, but we know little about intraspecific variation in susceptibility to grazing of different seagrass tissues.
View Article and Find Full Text PDFNumerous opisthobranchs are known to sequester chemical defenses from their prey and use them for their own defense. Information on feeding biology is critical for understanding the ecology and evolution of molluscs, yet information on feeding biology is still scarce for many groups. Gastropterid molluscs are often found on sponges, but there is controversy as to whether they are true sponge feeders.
View Article and Find Full Text PDFThe population structure of the edible Atlanto-Mediterranean sea urchin Paracentrotus lividus is described by analysing sequence variation in a fragment of the mitochondrial gene cytochrome c oxidase subunit I in 127 individuals from 12 localities across south-west Europe. The study revealed high levels of genetic diversity but low levels of genetic structure, suggesting a large degree of gene flow between populations and panmixis within each, the Mediterranean and Atlantic basins. However, we found significant genetic differentiation between the two basins probably due to restricted gene flow across the geographical boundary imposed by the area of the Strait of Gibraltar.
View Article and Find Full Text PDFSilica deposition is a fundamental process in sponges. Most sponges in the Classes Demospongiae and Hexactinellida secrete siliceous elements, which can subsequently fuse, interlock with each other, or form three-dimensional structures connected by spongin. The resulting skeletal frameworks allow sponges to grow upwards and facilitate water exchange with minimal metabolic cost.
View Article and Find Full Text PDFExamples from both marine and terrestrial systems have supported the hypothesis that predation is higher in tropical than in temperate habitats and that, as a consequence, tropical species have evolved more effective defenses to deter predators. Although this hypothesis was first proposed for marine sponges over 25 years ago, our study provides the first experimental test of latitudinal differences in the effectiveness of sponge chemical defenses. We collected 20 common sponge species belonging to 14 genera from tropical Guam and temperate Northeast Spanish coasts (Indo-Pacific and Mediterranean biogeographic areas) and conducted field-based feeding experiments with large and small fish predators in both geographic areas.
View Article and Find Full Text PDFThe small-scale associations in a rocky subtidal community in the northwestern Mediterranean were studied by a development of the continuous line transect method. This method allowed the overall measurement of non-randomness in interspecific contacts and the assignment of an association index to each species-pair, whose, significance was tested by Monte Carlo procedures. At the same time, the continuous recording allowed the study of the weakening of the interactions with increasing distances.
View Article and Find Full Text PDF